Geometriae Dedicata

, Volume 86, Issue 1–3, pp 81–91

On Jordan Angles and the Triangle Inequality in Grassmann Manifolds

  • Yurii A. Neretin
Article

Abstract

Let L, M and N be p-dimensional subspaces in \(\mathbb{R}\)n. Let {ψj} be the angles between L and M, let {ψj} be the angles between M and N, and let {θj} be the angles between L and M. Consider the orbit of the vector ψ = (ψ1,...., ψn) ∈ \(\mathbb{R}\)p with respect to permutations of coordinates and inversions of axes. Let Z be the convex hull of this orbit. Then θ ∈ ϕ + Z. We discuss similar theorems for other symmetric spaces. We also obtain formula for geodesic distance for arbitrary invariant convex Finsler metrics on classical symmetric spaces.

symmetric spaces matrix inequalities compound distance Finsler metrics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Yurii A. Neretin
    • 1
    • 2
  1. 1.Institute of Theoretical and Experimental PhysicsMoscowRussia
  2. 2.Independent University of MoscowMoscow

Personalised recommendations