Human Physiology

, Volume 27, Issue 5, pp 601–605 | Cite as

Effects of Regulatory Peptides on Electrophysiological Properties of the Human Heart

  • O. E. Osadchii
  • S. G. Kanorskii
  • V. M. Pokrovskii
  • A. N. Kurzanov
  • V. V. Skibitskii


During transesophageal electrical stimulation of the left atria in patients with heart diseases, an intravenous administration of Sandostatin prolonged the cardiac cycle and the effective refractory period of the atrioventricular junction, slowed down the sinoatrial conduction and the sinus node recovery time, and shifted the Wenckebach's point downwards. Neurotensin produced effects opposite to those of Sandostatin. During the Valsalva maneuver, Sandostatin strengthened bradycardia and broadened the range of heart rate changes associated with the vagal tone variations. The latter effect was also observed after the administration of neurotensin. Met-enkephalin and dalargin shortened the cardiac cycle, increased the corrected time of sinus node recovery time, but did not affect the cardiac rhythm dynamics during the Valsalva maneuver. These findings suggest that the regulatory peptides can be involved in control mechanisms determining the electrophysiological parameters of the human heart.


Cardiac Cycle Left Atrium Human Heart Refractory Period Valsalva Maneuver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Osadchii, O.E. and Pokrovskii, V.M., Peptidergic Mechanisms in the Cardiac Rhythm Parasympathetic Regulation, Usp. Fiziol. Nauk, 1993, vol. 24, no. 3, p. 71.Google Scholar
  2. 2.
    Campbell, G., Gibbins, I.L., Morris, J.L., et al., Somatostatin Is Contained in and Released from Cholinergic Nerves in the Heart of the Toad Bufo marinus, Neuroscience, 1982, vol. 7, no. 9, p. 2013.Google Scholar
  3. 3.
    Barron, B.A., Oakford, L.X., Gaugl, J.F., and Caffrey, J.L., Methionine-Enkephalin-Arg-Phe Immunoreactivity in Heart Tissue, Peptides, 1995, vol. 16, no. 7, p. 1221.Google Scholar
  4. 4.
    Crick, S.J., Wharton, J., Sheppard, M.N., et al., Innervation of the Human Cardiac Conduction System: A Quantitative Immunohistochemical Study, Circulation, 1994, vol. 89, no. 4, p. 1697.Google Scholar
  5. 5.
    Lishmanov, Yu.B. and Maslov, L.N., Opioidnye neiropeptidy, stress i adaptatsionnaya zashchita serdtsa (Opioid Neuropeptides, Stress, and Adaptive Heart Protection), Tomsk, Tomsk Gos. Univ., 1994.Google Scholar
  6. 6.
    Lin, C.I., Wei, J., Cheng, K.K., and Ho, L.T., Electropharmacological Effects of Sandostatin in Human Atrial Fibers, Int. J. Cardiol., 1991, vol. 31, no. 3, p. 313.Google Scholar
  7. 7.
    Webb, S.C., Krikler, D.M., Hendry, W.G., et al., Electrophysiological Actions of Somatostatin on the Atrioventricular Junction in Sinus Rhythm and Reentry Tachycardia, Brit. Heart J., 1986, vol. 56, no. 3, p. 236.Google Scholar
  8. 8.
    Narula, O.S., Shantha, N., Vasquez, M., et al., A New Method for Measurement of Sinoatrial Conduction Time, Circulation, 1978, vol. 58, no. 4, p. 706.Google Scholar
  9. 9.
    Little, W.C., Barr, W.K., and Crawford, M.H., Altered Effect of the Valsalva Maneuver on Left Ventricular Volume in Patients with Cardiomyopathy, Circulation, 1985, vol. 71, no. 2, p. 227.Google Scholar
  10. 10.
    Montsevichyute-Eringene, E.V., Simplified Mathematico-Statistical Methods in Medical Research, Patol. Fiziol. Eksp. Ter., 1964, no. 4, p. 71.Google Scholar
  11. 11.
    Osadchii, O.E., Pokrovskii, V.M., Matsko, M.A., and Cherednik, I.L., Cardiotropic Effects of Somatostatin and Its Antagonist, Byul. Eksp. Biol. Med., 1997, vol. 69, no. 9, p. 263.Google Scholar
  12. 12.
    Wiley, J.W., Uccioli, L., Owyang, C., and Yamada, T., Somatostatin Stimulates Acetylcholine Release in the Canine Heart, Amer. J. Physiol., 1989, vol. 257, no. 2, part 2, H483.Google Scholar
  13. 13.
    Lundberg, J.M., Rokaeus, A., Hokfelt, T., et al., Neurotensin-like Immunoreactivity in the Preganglionic Sympathetic Nerves and in the Adrenal Medulla of the Cat, Acta Physiol. Scand., 1982, vol. 114, p. 153.Google Scholar
  14. 14.
    Bachoo, M. and Polosa, C., Cardioacceleration Produced by Close Intra-Arterial Injection of Neurotensin into the Stellate Ganglion of the Cat, Can. J. Physiol. Pharmacol., 1988, vol. 66, no. 4, p. 408.Google Scholar
  15. 15.
    Osadchii, O.E., Pokrovskii, V.M., Kompaniets, O.G., and Kurzanov, A.N., Comparative Evaluation of Cardiotropic Effects of Neurotensin and Adrenaline in Cats, Fiziol. Zh., 1996, vol. 82, no. 1, p. 104.Google Scholar
  16. 16.
    Levy, M.N. and Martin, P.J., Neural Regulation of the Heart Beat, Ann. Rev. Physiol., 1981, vol. 43, p. 443.Google Scholar
  17. 17.
    Rozanski, G.J., Lipsius, S.L., and Randall, W.C., Functional Characteristics of Sinoatrial and Subsidiary Pacemaker Activity in the Canine Right Atrium, Circulation, 1983, vol. 67, no. 6, p. 1378.Google Scholar
  18. 18.
    Gulyaev, V.P., Masenko, V.P., Yurenev, A.P., and Titov, V.N., Blood Plasma beta-Endorphin Concentration in the Silent Myocardial Ischemia during Holter's ECG Monitoring, Kardiologiya, 1992, vol. 32, no. 3, p. 11.Google Scholar
  19. 19.
    Konishi, S., Tsunoo, A., and Otsuka, M., Enkephalins Presynaptically Inhibit Cholinergic Transmission in Sympathetic Ganglia, Nature, 1979, vol. 282, p. 515.Google Scholar
  20. 20.
    Fuder, H., Buder, M., Riers, H.-D., and Rothacher, G., On the Opioid Receptor Subtype Inhibiting the Evoked Release of 3H-Noradrenaline from Guinea-Pig Atria in vivo, Naunyn-Schmiedeberg's Arch. Pharmacol., 1986, vol. 332, p. 148.Google Scholar
  21. 21.
    Xiao, R.-P., Pepe, S., Spurgeon, H., et al., Opioid Peptide Receptor Stimulation Reverses beta-Adrenergic Effects in Rat Heart Cells, Amer. J. Physiol., 1997, vol. 272, no. 2, part 2, H797.Google Scholar
  22. 22.
    Weitzel, R., Illes, P., and Starke, K., Inhibition via Opioid Mu-and Delta-Receptors of Vagal Transmission in Rabbit Isolated Heart, Naunyn-Schmiedeberg's Arch. Pharmacol., 1984, vol. 328, no. 2, p. 186.Google Scholar
  23. 23.
    Pokrovskii, V.M., Osadchii, O.E., Cherednik, I.L., et al., Met-Enkephalin Involvement in Determining the Vagal Functional Effects upon the Cardiac Rhythm, Dokl. Akad. Nauk, 1993, vol. 328, no. 2, p. 267.Google Scholar
  24. 24.
    Alboni, P., Malcarne, C., Pedroni, P., et al., Electrophysiology of Normal Sinus Node with and without Autonomic Blockade, Circulation, 1982, vol. 65, no. 6, p. 1236.Google Scholar
  25. 25.
    Schwartz, P.J., Billman, G.E., and Stone, L.H., Autonomic Mechanisms in Ventricular Fibrillation Induced by Myocardial Ischemia during Exercise in Dogs with Healed Myocardial Infarction, Circulation, 1983, vol. 69, no. 4, p. 790.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • O. E. Osadchii
    • 1
  • S. G. Kanorskii
    • 1
  • V. M. Pokrovskii
    • 1
  • A. N. Kurzanov
    • 1
  • V. V. Skibitskii
    • 1
  1. 1.Kuban' State Medical AcademyKrasnodarRussia

Personalised recommendations