Advertisement

Russian Journal of Genetics

, Volume 37, Issue 9, pp 1068–1073 | Cite as

Evolution of Lycopodiaceae Inferred from Spacer Sequencing of Chloroplast rRNA Genes

  • S. P. Yatsentyuk
  • K. M. Valiejo-Roman
  • T. H. Samigullin
  • N. Wilkström
  • A. V. Troitsky
Article

Abstract

Nucleotide sequences of a chloroplast rDNA region including 8 bp from the 3" end of 23S rDNA–ITS2–4.5S rDNA–ITS3–5S rDNA–ITS4 (approximately 800 bp) were determined in 25 species of Lycopodiaceae and two species of the genus Isoetes. The rate of molecular evolution of spacers significantly varied in different Lycopsida taxa. A phylogenetic analysis by the neighbor-joining (NJ) method revealed that the family Lycopodiaceae is monophyletic. The topology of phylogenetic trees suggests the isolation of four or probably five genera in family Lycopodiaceae. For these genera, synapomorphic indels were detected. The obtained data were compared with the results of phylogenetic analysis of Lycopsida with regard to other sequences. The relationships of taxa within the family Lycopodiaceae is discussed.

Keywords

Nucleotide Phylogenetic Analysis Nucleotide Sequence Phylogenetic Tree Molecular Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Meien, S.V., Osnovy paleobotaniki (Basics of Paleobotany), Moscow: Nedra, 1987.Google Scholar
  2. 2.
    Filin, V.R., The Division Lycopodiophyta, Zhizn' rastenii (Plant Life), vol. 4, Grushvitskii, I.V. and Zhilin, S.G., Eds., Moscow: Prosveshchenie, 1978, pp. 99-122.Google Scholar
  3. 3.
    Kenrick, P. and Crane, P.R., The Origin and Early Diversification of Land Plants: A Cladistic Study, Washington: Smithsonian Inst., 1997.Google Scholar
  4. 4.
    Stewart, W.N. and Rothwell, G.W., Paleobotany and the Evolution of Plants, Cambridge: Cambridge Univ. Press, 1993, pp. 125-161.Google Scholar
  5. 5.
    Antonov, A.S., Osnovy genosistematiki vysshikh rastenii (Basics of Genetic Taxonomy of Higher Plants), Moscow: MAIK Nauka/Interperiodika, 2000.Google Scholar
  6. 6.
    Wikström, N. and Kenrick, P., Phylogeny of Epiphytic Huperzia (Lycopodiaceae): Paleotropical and Neotropical Clades Corroborated by rbcL Sequences, Nord. J. Bot., 2000, vol. 20, pp. 165-171.Google Scholar
  7. 7.
    Wikström, N., Kenrick, P., and Chase, M., Epiphytism and Terrestrialization in Tropical Huperzia (Lycopodiaceae), Plant Syst. Evol., 1999, vol. 218, pp. 221-243.Google Scholar
  8. 8.
    Wikström, N. and Kenrick, P., Relationships of Lycopodium and Lycopodiella Based on Combined Plastid rbcL Gene and trnL Intron Sequence Data, Syst. Bot., 2000, vol. 25, pp. 495-510.Google Scholar
  9. 9.
    Doyle, J.J. and Doyle, J.L., A Rapid Isolation Procedure for Small Quantities of Fresh Leaf Tissue, Phytohem. Bull., 1987, vol. 19, pp. 11-15.Google Scholar
  10. 10.
    Øllgaard, V., A Revised Classification of the Lycopodiaceae s. lat., Opera Botanica, 1987, vol. 92, pp. 153-178.Google Scholar
  11. 11.
    Goremykin, V., Bobrova, V., Pahnke, J., et al., Noncoding Sequences from the Slowly Evolving Chloroplast Inverted Repeat in Addition to rbcL Data Do Not Support Gnetalean Affinities of Angiosperms, Mol. Biol. Evol., 1996, vol. 13, pp. 383-396.Google Scholar
  12. 12.
    Samigullin, T.H., Valiejo-Roman, K.M., Troitsky, A.V., et al., Sequences of rDNA Internal Transcribed Spacers from the Chloroplast DNA of 26 Bryophytes: Properties and Phylogenetic Utility, FEBS Lett., 1998, vol. 422, pp. 47-51.Google Scholar
  13. 13.
    Saitou, N. and Nei, M., The Neighbor-Joining Method: A New Method for the Reconstruction of Phylogenetic Trees, Mol. Biol. Evol., 1987, vol. 4, pp. 406-425.Google Scholar
  14. 14.
    Van de Peer, Y. and De Wachter, R., Construction of Evolutionary Distance Trees with TREECON for Windows: Accounting for Variation in Nucleotide Substitution Rate among Sites, Comput. Appl. Biosci., 1997, vol. 13, pp. 227-230.Google Scholar
  15. 15.
    Troitskii, A.V., Studies in Molecular Phylogenetics of Plants: From Intraspecific Polymorphism to Macrotaxonomy, Doctoral (Biol.) Dissertation, Moscow, 1999.Google Scholar
  16. 16.
    Antonov, A.S., Troitsky, A.V., Samigullin, T.Kh., et al., Early Events in the Evolution of Angiosperms Deduced from cpDNA ITS 2-4 Sequence Comparisons, Proc. Int. Symp. on Fam. Magnoliaceae, Beijing: Science, 2000, pp. 210-214.Google Scholar
  17. 17.
    Zharkikh, A.A., Rzhetsky, A.Yu., Morozov, P.S., et al., VOSTORG: Package of Microcomputer Programs of Phylogenetic Analysis, Models and Computer Methods in Molecular Biology and Genetics: Abstracts Int. Conf., Novosibirsk, 1990, pp. 217-218.Google Scholar
  18. 18.
    Kranz, H.D. and Huss, V.A.R., Molecular Evolution of Pteridophytes and Their Relationship to Seed Plants: Evidence from Complete 18S rRNA Gene Sequences, Plant Syst. Evol., 1996, vol. 202, pp. 1-11.Google Scholar
  19. 19.
    Wagner, W.H. and Beitel, M.J., Generic Classification of Modern North American Lycopodiaceae, Ann. Missouri Bot. Gard., 1992, vol. 79, pp. 676-686.Google Scholar
  20. 20.
    Bateman, R.M., Morphometric Reconstruction, Palaeoecology and Phylogeny of Oxroadia gracilis Alvin Emend., and O. conferta Sp. Nov.: Anatomically Preserved Lycopods from Oxroad Bay, SE Scotland, Palaeontographica, 1992, no. 228, pp. 29-103.Google Scholar
  21. 21.
    Wikström, N. and Kenrick, P., Evolution of Lycopodiaceae (Lycopsida): Estimating Divergence Times from rbcL Gene Sequences Using Nonparametric Rate Smoothing, Mol. Phylogenet. Evol., 2001, vol. 19, pp. 177-186.Google Scholar
  22. 22.
    Hackney, F.M.V., A Review of and Contribution to Knowledge of Phylloglossum drummondii Kunze, Proc. Linn. Soc. NSW, 1950, no. 75, pp. 133-152.Google Scholar
  23. 23.
    Whittier, D.P. and Braggins, J.E., The Young Gametophyte of Phylloglossum (Lycopodiaceae), Ann. Missouri Bot. Gard., 1992, vol. 79, pp. 730-736.Google Scholar
  24. 24.
    Bower, F.O., Primitive Land Plants, London: Macmillan, 1935.Google Scholar
  25. 25.
    Wikström, N. and Kenrick, P., Phylogeny of Lycopodiaceae (Lycopsida) and the Relationship of Phylloglossum drummondii Kunze Based on rbcL Sequence Data, Int. J Plant Sci., 1997, vol. 158, no. 6, pp. 862-871.Google Scholar
  26. 26.
    Holub, J., Some Taxonomic Changes within Lycopodiales, Folia Geobot. Phytotax., 1991, vol. 26, pp. 81-94.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • S. P. Yatsentyuk
    • 1
  • K. M. Valiejo-Roman
    • 1
  • T. H. Samigullin
    • 1
  • N. Wilkström
    • 2
  • A. V. Troitsky
    • 1
  1. 1.Belozerskii Institute of Molecular Biology and Bioorganic ChemistryMoscow State UniversityMoscowRussia
  2. 2.Department of Botany, The Natural History Museum, Cromwell RoadLondon

Personalised recommendations