Advertisement

Pharmaceutical Research

, Volume 15, Issue 5, pp 719–725 | Cite as

Transport Characteristics of Peptidomimetics. Effect of the Pyrrolinone Bioisostere on Transport Across Caco-2 Cell Monolayers

  • Masao Sudoh
  • Giovanni M. Pauletti
  • Wenqing Yao
  • William Moser
  • Akihisa Yokoyama
  • Alexander Pasternak
  • Paul A. Sprengeler
  • Amos B. SmithIII
  • Ralph Hirschmann
  • Ronald T. Borchardt
Article

Abstract

Purpose. To compare the permeation characteristics of amide bond-containing HIV-1 protease inhibitors and their pyrrolinone-containing counterparts across Caco-2 cell monolayers, a model of the intestinal mucosa.

Methods. Transepithelial transport and cellular uptake of three pairs of amide bond-containing and pyrrolinone-based peptidomimetics were assessed in the presence and absence of cyclosporin A using the Caco-2 cell culture model. The potential of the peptidomimetics to interact with biological membranes was estimated by IAM chromatography.

Results. In the absence of cyclosporin A, apical (AP) to basolateral (BL) flux of all compounds studied was less than the flux determined in the opposite direction (i.e., BL-to-AP). The ratio of the apparent permeability coefficients (Papp) calculated for the BL-to-AP and AP-to-BL transport (PBL⇒AP/PAP⇒BL) varied between 1.7 and 36.2. When individual pairs were compared, PBL⇒AP/PAP⇒BL ratios of the pyrrolinone-containing compounds were 1.5 to 11.5 times greater than those determined for the amide bond-containing analogs. Addition of 25 μM cyclosporin A to the transport buffer reduced the PBL⇒AP /PAP⇒BL ratios for all protease inhibitors to a value close to unity. Under these conditions, the amide bond-containing peptidomimetics were at least 1.6 to 2.8 times more able to permeate Caco-2 cell monolayers than were the pyrrolinone-containing compounds. The intrinsic uptake characteristics into Caco-2 cells determined in the presence of 25 μM cyclosporin A were slightly greater for the amide bond-containing protease inhibitors than for the pyrrolinone-containing analogs. These uptake results are consistent with the transepithelial transport results determined across this in vitro model of the intestinal mucosa.

Conclusions. The amide bond-containing and pyrrolinone-based peptidomimetics are substrates for apically polarized efflux systems present in Caco-2 cell monolayers. The intrinsic permeabilities of the amide bond-containing protease inhibitors are slightly greater than the intrinsic permeabilities of the pyrrolinone-based analogs through Caco-2 cell monolayers.

peptidomimetics pyrrolinone bioisostere Caco-2 cells membrane permeability polarized efflux systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. J. Plattner and D. J. Norbeck. Obstacles to drug development from peptide leads. In C. R. Clark and W. H. Moos (eds.), Drug Discovery Technologies, Ellis Horwood, Chichester (UK), 1990, pp. 92–126.Google Scholar
  2. 2.
    G. M. Pauletti, S. Gangwar, G. T. Knipp, M. M. Nerurkar, F. W. Okumu, K. Tamura, T. J. Sinhaan, and R. T. Borchardt. Structural requirements for intestinal absorption of peptide drugs. J. Controlled Release 41:3–17 (1996).Google Scholar
  3. 3.
    G. M. Pauletti, S. Gangwar, T. J. Siahaan, J. Aubé, and R. T. Borchardt. Improvement of oral peptide bioavailability: peptidomimetics and prodrug strategies. Adv. Drug Delivery Rev. 27:235–256 (1997).Google Scholar
  4. 4.
    J. R. Huff. HIV protease—A novel chemotherapeutic target for AIDS. J. Med. Chem. 34:2305–2314 (1991).PubMedGoogle Scholar
  5. 5.
    I. Ojima, S. Chakravarty, and Q. Dong. Antithrombic agents: from RGD to peptide mimetics. Bioorg. Med. Chem. 3:337–360 (1995).PubMedGoogle Scholar
  6. 6.
    J. B. Kostis and E. A. DeFelice. Angiotensin Converting Enzyme Inhibitors, Alan R. Liss, New York, NY, 1987.Google Scholar
  7. 7.
    J. Boger. Renin inhibitors. Annu. Rep. Med. Chem. 20:257–266 (1985).Google Scholar
  8. 8.
    W. J. Greenlee. Renin inhibitors. Med. Res. Rev. 10:173–236 (1990).PubMedGoogle Scholar
  9. 9.
    H. D. Kleinert, S. H. Rosenberg, W. R. Baker, H. H. Stein, V. Klinghofer, J. Barlow, K. Spina, J. Polakowski, P. Kovar, J. Cohen, and J. Denissen. Discovery of a peptide-based renin inhibitor with oral bioavailability and efficacy. Science 257:1940–1943 (1992).PubMedGoogle Scholar
  10. 10.
    R. J. Simon, R. S. Kania, R. N. Suckermann, V. D. Huebner, D. A. Jewell, S. C. Banville, S. Ng, L. Wang, S. Rosenberg, C. K. Marlowe, D. Spellmeyer, R. Tan, A. D. Frankel, D. Santi, F. E. Cohen, and P. A. Bartlett. Peptoids—A modular approach to drug discovery. Proc. Natl. Acad. Sci. USA 39:9367–9371 (1992).Google Scholar
  11. 11.
    J. J. Nestor Jr. Improved duration of action of peptide drugs. In M. D. Taylor and G. L. Amidon (eds.), Peptide-Based Drug Design: Controlling Transport and Metabolism, American Chemical Society, Washington, DC, 1995, pp. 449–471.Google Scholar
  12. 12.
    T. K. Sawyer. Peptidomimetic design and chemical approaches to petides metabolism. In M. D. Taylor and G. L. Amidon (eds.), Peptide-Based Drug Design, American Chemical Society, Washington, DC, 1995, pp. 387–422.Google Scholar
  13. 13.
    A. B. I. Smith, T. P. Keenan, R. C. Holcomb, P. A. Sprengeler, M. C. Guzman, J. L. Wood, P. J. Carroll, and R. Hirschmann. Design, synthesis, and crystal structure of a pyrrolinone-based peptidomimetic possessing the conformation of a β-strand: Potential application to the design of novel inhibitors of proteolytic enzymes. J. Am. Chem. Soc. 114:10672–10674 (1992).Google Scholar
  14. 14.
    M. Miller, J. Schnieder, B. K. Sathyanarayana, M. V. Toth, G. R. Marshall, L. Clawson, L. M. Selk, S. B. H. Kent, and A. Wlodawer. Structure of complex of sunthetic HIV 1 protease with a substrate-based inhibitor at 2.3Å resolution. Science 246:1149–1152 (1989).PubMedGoogle Scholar
  15. 15.
    A. B. Smith III, R. Hirschmann, A. Pasternack, R. Akaishi, M. C. Guzman, D. R. Jones, T. P. Keenan, and P. A. Sprengeler. Design and synthesis of peptidomimetic inhibitors of HIV-1 protease and renin. Evidence for improved transport. J. Med. Chem. 37:215–218 (1994).PubMedGoogle Scholar
  16. 16.
    P. Artursson. Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J. Pharm. Sci. 79:476–482 (1990).PubMedGoogle Scholar
  17. 17.
    M. Pinto, S. Robine-Leon, M.-D. Appay, M. Kedinger, N. Tradou, E. Dussaulx, B. Lacroix, P. Simon-Assmann, K. Haffen, J. Fogh, and A. Zweibaum. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol. Cell 47:323–330 (1983).Google Scholar
  18. 18.
    G. Wilson, I. F. Hassan, C. J. Dix, I. Williamson, R. Shah, and M. Mackay. Transport and permeability properties of human Caco-2 cells: an in vitro model of the intestinal epithelial cell barrier. J. Contr. Rel. 11:25–40 (1990).Google Scholar
  19. 19.
    J. P. Vacca, B. D. Dorsey, W. A. Schleiff, R. B. Levin, S. L. McDaniel, P. L. Darke, J. Zugay, J. C. Quintero, O. M. Blahy, E. Roth, V. V. Sardana, A. J. Schlabach, P. I. Graham, J. H. Condra, L. Gotlib, M. K. Holloway, J. Lin, I.-W. Chen, K. Vastag, D. Ostovic, P. S. Anderson, E. A. Emini, and J. R. Huff. L-735,524: An orally bioavailable human immunodeficiency virus type 1 protease inhibitor. Proc. Natl. Acad. Sci. USA 91:4096–4100 (1994).PubMedGoogle Scholar
  20. 20.
    A. B. Smith III, R. Hirschmann, A. Pasternak, M. C. Guzman, and P. A. Sprengeler. Pyrrolinone based HIC protease inhibitors. Design, synthesis and antiviral activity; evidence for improved transport. J. Am. Chem. Soc. 117:11113–11123 (1995).Google Scholar
  21. 21.
    A. B. Smith III, R. Hirschmann, A. Pasternack, W. Yao, P. A. Sprengeler, M. K. Holloway, L. C. Kuo, Z. Chen, P. L. Darke, and W. A. Schleif. An orally bioavailable pyrrolinone inhibitor of HIV-1 protease: computational analysis and X-ray crystal structure of the enzyme complex. J. Med. Chem. 40:2240–2444 (1997).Google Scholar
  22. 22.
    G. M. Pauletti, S. Gangwar, F. W. Okumu, T. J. Siahaan, V. J. Stella, and R. T. Borchardt. Esterase-sensitive cyclic prodrugs of peptides: evaluation of an acylxoyalkoxy promoiety in a model hexapeptide. Pharm. Res. 13:1615–1623 (1996).PubMedGoogle Scholar
  23. 23.
    H. Liu, S. Ong, L. Glunz, and C. Pidgeon. Predicting drug-membrane interactions by HPLC: structural requirements of chromatographic surfaces. Anal. Chem. 67:3550–3557 (1995).PubMedGoogle Scholar
  24. 24.
    P. S. Burton, R. A. Conradi, and N. F. H. Ho. Evidence for a polarized efflux system for peptides in the apical region of Caco-2 cells. Biochem. Biophys. Res. Commun. 190:760–766 (1993).PubMedGoogle Scholar
  25. 25.
    M. M. Gottesman and I. Pastan. Biochemistry of multidrug resistance mediated by the multidrug transporter. Ann. Rev. Biochem. 62:385–427 (1993).PubMedGoogle Scholar
  26. 26.
    W. H. M. Peters, C. E. W. Boon, H. M. J. Roelofs, T. Wobbes, F. M. Nagengast, and P. G. Kremers. Expression of drug-metabolizing enzymes and P-170 glycoprotein in colorectal carcinoma and normal mucosa. Gastroenterology 103:448–455 (1992).PubMedGoogle Scholar
  27. 27.
    P. S. Burton, J. T. Goodwin, R. A. Conradi, N. F. H. Ho, and A. R. Hilgers. In vitro Permeability of peptidomimetic drugs: the role of polarized efflux pathways as additional barriers to absorption. Adv. Drug Delivery Rev. 23:143–156 (1997).Google Scholar
  28. 28.
    P. S. Burton, R. A. Conradi, N. F. H. Ho, A. R. Hilgers, and R. T. Borchardt. How structural features influence the biomembrane permeability of peptides. J. Pharm. Sci. 85:1336–1340 (1996).PubMedGoogle Scholar
  29. 29.
    C. Pidgeon, S. Ong, H. Liu, X. Qiu, M. Pidgeon, A. H. Dantzig, J. Munroe, W. J. Hornback, J. S. Kasher, L. Glunz, and T. Szczerba. IAM Chromatography: an in vitro screen for predicting drug membrane permeability. J. Med. Chem. 38:590–594 (1995).PubMedGoogle Scholar
  30. 30.
    W. T. Klimecki, B. W. Futscher, T. M. Grogan, and W. S. Dalton. P-glycoprotein expression and function in circulating blood cells from normal volunteers. Blood 83:2451–2458 (1994).PubMedGoogle Scholar
  31. 31.
    A. Andreana, S. Aggarwal, S. Gollapudi, D. Wien, T. Tsuruo, and S. Gupta. Abnormal expression of a 170-kilodalton P-glycoprotein encoded by MDR1 gene, a metabolically active efflux pump, in CD4+ and CD8+ T cells from patients with human immunodeficiency virus type 1 infection. AIDS Res. Hum. Retroviruses 12:1457–1462 (1996).PubMedGoogle Scholar
  32. 32.
    J. A. Bilello, P. A. Bilello, K. Stellrecht, J. Leonard, D. W. Norbeck, D. J. Kempf, T. Robins, and G. L. Drusano. Human serum α-1 acid glycoprotein reduces uptake, intracellular concentration, and antiviral activity of A-80987, an inhibitor of the human immunodeficiency virus type 1 protease. Antimicrob. Agents Chemother. 40:1491–1497 (1996).PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Masao Sudoh
    • 1
  • Giovanni M. Pauletti
    • 1
    • 2
  • Wenqing Yao
    • 3
  • William Moser
    • 3
  • Akihisa Yokoyama
    • 3
  • Alexander Pasternak
    • 3
  • Paul A. Sprengeler
    • 3
  • Amos B. SmithIII
    • 3
  • Ralph Hirschmann
    • 3
  • Ronald T. Borchardt
    • 1
  1. 1.Department of Pharmaceutical ChemistryThe University of KansasLawrence
  2. 2.School of PharmacyTexas Tech University Health Sciences CenterAmarillo
  3. 3.Department of ChemistryUniversity of PennsylvaniaPhiladelphia

Personalised recommendations