Space Science Reviews

, Volume 96, Issue 1–4, pp 365–392 | Cite as

Alteration Assemblages in Martian Meteorites: Implications for Near-Surface Processes

  • J.C. Bridges
  • D.C. Catling
  • J.M. Saxton
  • T.D. Swindle
  • I.C. Lyon
  • M.M. Grady


The SNC (Shergotty-Nakhla-Chassigny) meteorites have recorded interactions between martian crustal fluids and the parent igneous rocks. The resultant secondary minerals — which comprise up to ∼1 vol.% of the meteorites — provide information about the timing and nature of hydrous activity and atmospheric processes on Mars. We suggest that the most plausible models for secondary mineral formation involve the evaporation of low temperature (25 – 150 °C) brines. This is consistent with the simple mineralogy of these assemblages — Fe-Mg-Ca carbonates, anhydrite, gypsum, halite, clays — and the chemical fractionation of Ca-to Mg-rich carbonate in ALH84001 "rosettes". Longer-lived, and higher temperature, hydrothermal systems would have caused more silicate alteration than is seen and probably more complex mineral assemblages. Experimental and phase equilibria data on carbonate compositions similar to those present in the SNCs imply low temperatures of formation with cooling taking place over a short period of time (e.g. days). The ALH84001 carbonate also probably shows the effects of partial vapourisation and dehydration related to an impact event post-dating the initial precipitation. This shock event may have led to the formation of sulphide and some magnetite in the Fe-rich outer parts of the rosettes.

Radiometric dating (K-Ar, Rb-Sr) of the secondary mineral assemblages in one of the nakhlites (Lafayette) suggests that they formed between 0 and 670 Myr, and certainly long after the crystallisation of the host igneous rocks. Crystallisation of ALH84001 carbonate took place 0.5 Gyr after the parent rock. These age ranges and the other research on these assemblages suggest that environmental conditions conducive to near-surface liquid water have been present on Mars periodically over the last ∼1 Gyr. This fluid activity cannot have been continuous over geological time because in that case much more silicate alteration would have taken place in the meteorite parent rocks and the soluble salts would probably not have been preserved.

The secondary minerals could have been precipitated from brines with seawater-like composition, high bicarbonate contents and a weakly acidic nature. The co-existence of siderite (Fe-carbonate) and clays in the nakhlites suggests that the pCO2 level in equilibrium with the parent brine may have been 50 mbar or more. The brines could have originated as flood waters which percolated through the top few hundred meters of the crust, releasing cations from the surrounding parent rocks. The high sulphur and chlorine concentrations of the martian soil have most likely resulted from aeolian redistribution of such aqueously-deposited salts and from reaction of the martian surface with volcanic acid volatiles.

The volume of carbonates in meteorites provides a minimum crustal abundance and is equivalent to 50–250 mbar of CO2 being trapped in the uppermost 200–1000 m of the martian crust. Large fractionations in δ18O between igneous silicate in the meteorites and the secondary minerals (≤30‰) require formation of the latter below temperatures at which silicate-carbonate equilibration could have taken place (∼400°C) and have been taken to suggest low temperatures (e.g. ≤150°C) of precipitation from a hydrous fluid.


Anhydrite Siderite Secondary Mineral Parent Rock Alteration Assemblage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anovitz, L.M., and Essene, E.J.: 1987, 'Phase Equilibria in the System CaCO3-MgCO3-FeCO3', J. Petrology 28, 389-414.Google Scholar
  2. Baker, V.R., Carr, M.H., Gulick, V.C., Williams, C.R., Marley, M.S.: 1992, 'Channels and Valley Networks', in H.H. Kieffer, B.M. Jakosky, C.W. Snyder and M.S. Matthews (eds.), Mars, Univ. Arizona Press, Tucson, pp. 493-522.Google Scholar
  3. Baker, L.L., Agenbroad, D.J., and Wood, S.J.: 2000, 'Experimental Hydrothermal Alteration of a Martian Analog Basalt:Implications for Martian Meteorites', Met. Planet. Sci. 35, 31-38.Google Scholar
  4. Banin, A., Clark, B.C. and Wänke, H.: 1992, 'Surface Chemistry and Mineralogy', in H.H. Kieffer, B.M. Jakosky, C.W. Snyder and M.S. Matthews (Eds.), Mars, Univ. Arizona Press, Tucson, pp. 594-625.Google Scholar
  5. Banin, A., Han, F.X., Kan, I. and Cicelsky A.: 1997, 'Acidic Volatiles in the Mars Soil', J. Geophys.Res. 102, 13,341-13, 356.Google Scholar
  6. Bell, J.F. III, et al.: 2000, 'Mineralogic and Compositional Properties of Martian Soil and Dust: Results from Pathfinder', J. Geophys. Res. 105, 1721-1755.Google Scholar
  7. Bibring, J.-P., and Erard, S.: 2001, 'The Martian Surface Composition', Space Sci. Rev., this volume.Google Scholar
  8. Bills, B.G.: 1990, 'The Rigid Obliquity History of Mars', J. Geophys. Res. 95, 14, 137-14, 153.Google Scholar
  9. Boctor, N.Z., Wang, J., Alexander, C.M.O'D., Hauri, E., Bertka, C.M. and Fei, Y.: 1998, 'Hydrogen Isotope Studies of Carbonate and Phosphate in Martian Meteorite Allan Hills 84001' Met. Planet.Sci. 33, A18 (abstract).Google Scholar
  10. Bogard, D.D., and Garrison, D.H.: 1999, 'Argon-39-argon-40 “Ages” and Trapped Argon in Martian Shergottites, Chassigny, and Allan Hills 84001', Met. Planet. Sci. 34, 451-473.Google Scholar
  11. Bogard, D.D., Clayton, R.N., Marti, K., Owen, T., and Turner, G.: 'Martian Volatiles:Isotopic Composition, Origin, and Evolution', Space Sci. Rev., this volume.Google Scholar
  12. Borg, L.E., Connelly, J.N., Nyquist, L.E., Shih, C.-Y., Wiesmann, H., and Reese, Y.: 1999, 'The Age of the Carbonates in Martian Meteorite ALH84001', Science 286, 90-94.Google Scholar
  13. Bradley, J.P., McSween, H.P., and Harvey, R.P.: 1998, 'Epitaxial Growth of Nanophase Magnetite in Martian Meteorite Allan Hills 84001:Implications for Biogenic Mineralization', Met. Planet. Sci. 33, 765-773.Google Scholar
  14. Brass, G.W.: 1980, 'Stability of Brines on Mars', Icarus 42, 20-28.Google Scholar
  15. Brearley, A.J.: 2000, 'Hydrous Phases in ALH84001:Further Evidence for Preterrestrial Alteration and a Shock-induced Thermal Overprint', Proc. 31 st Lunar Planet. Sci. Conf., abstract #1203 (CD-ROM).Google Scholar
  16. Bridges, J.C., and Grady, M.M.: 1999, 'A Halite-siderite-anhydrite-chlorapatite Assemblage in Nakhla:Mineralogical Evidence for Evaporites on Mars', Met. Planet. Sci. 34, 407-416.Google Scholar
  17. Bridges, J.C., and Grady, M.M.: 2000, 'Evaporite Mineral Assemblages in the Nakhlite (Martian) Meteorites', Earth Planet. Sci. Lett. 176, 267-279.Google Scholar
  18. Carr, M.H.: 1996, 'Water on Mars', Oxford Univ. Press, Oxford, 229 pp.Google Scholar
  19. Carr, R.H., Grady, M.M., Wright, I.P., and Pillinger, C.T.: 1985, 'Martian Atmospheric Carbon Dioxide and Weathering-products in SNC Meteorites', Nature 314, 248-250.Google Scholar
  20. Catling, D.C.: 1999, 'A Chemical Model for Evaporites on Early Mars: Possible Sedimentary Tracers of the Early Climate and Implications for Exploration', J. Geophys. Res. 104,16,453-16,469.Google Scholar
  21. Chatzitheodoridis, E., and Turner, G.: 1990, 'Secondary Minerals in the Nakhla Meteorite' Meteoritics 25, 354 (abstract).Google Scholar
  22. Christensen, P.R., and Moore, H.J.: 1992, 'The Martian Surface Layer', in H.H. Kieffer et al. (eds.), Mars, Univ. Arizona Press, Tucson, pp. 686-729.Google Scholar
  23. Christensen, P.R., et al.: 1998, 'Results from the Mars Global Surveyor Thermal Emission Spectrometer', Science 279, 1692-1698.Google Scholar
  24. Clayton, R.N., and Mayeda, T.K.: 1988, 'Isotopic Composition of Carbonate in EETA 79001 and its Relation to Parent Body Volatiles', Geochim. Cosmochim. Acta 52, 925-927.Google Scholar
  25. Dong, H., Hall, C.M., Halliday, A.N., and Peacor, D.R.: 1997, 'Laser 40Ar-39Ar Dating of Microgram-size Illite Samples and Implications for Thin Section Dating', Geochim. Cosmochim. Acta 61, 3803-3808.Google Scholar
  26. Douglas, C., Wright, I.P., and Pillinger, C.T.: 1994, 'A Search for Further Concentrations of Organic Materials in EETA79001', Proc. 25 th Lunar Planet. Sci. Conf., 339 (abstract).Google Scholar
  27. Drever, J.I.: 1997, 'The Geochemistry of Natural Waters', Prentice-Hall, London. 436 pp.Google Scholar
  28. Eiler, J.M., Valley, J.W., Graham, C.M., and Fournelle, J.: 1998, 'Geochemistry of Carbonates and Glass in ALH84001', Met. Planet. Sci. 33, A4 (abstract).Google Scholar
  29. Farquhar, J., and Thiemens, M.H.: 2000, 'Oxygen Cycle of the Martian Atmosphere-regolith System: Δ 17O of Secondary Phases in Nakhla and Lafayette', J. Geophys. Res. 105,11,991-11,997.Google Scholar
  30. Farquhar, J., Thiemens, M.H., and Jackson, T.: 1998, 'Atmosphere-surface Interactions on Mars: Δ 17O Measurements of Carbonate from ALH84001', Science 275, 1580-1582.Google Scholar
  31. Farquhar, J., Savarino, J., Jackson, T.I., and Thiemens, M.H.: 2000, 'Evidence of Atmospheric Sulphur in the Martian Regolith from Sulphur Isotopes in Meteorites.', Nature 404, 50-52.Google Scholar
  32. Floran, R.J., Prinz, M., Hlava, P.F., Keil, K., Nehru, C.E., and Hinthorne, J.R.: 1978, 'The Chassigny Meteorite:a Cumulate Dunite with Hydrous Amphibole-bearing Melt Inclusions', Geochim. Cosmochim. Acta 42, 1213-1230.Google Scholar
  33. Forget, F., and Pierrehumbert, R.T.: 1997, 'Warming Early Mars with Carbon Dioxide Clouds that Scatter Infrared Radiation', Science 278, 1273.Google Scholar
  34. Forsythe, R.D., and Zimbelman, J.R.: 1995, 'A Case for Ancient Evaporite Basins on Mars', J. Geophys. Res. 100, 5553-5563.Google Scholar
  35. Forsythe, R.D., and Blackwelder, C.R.: 1998, 'Closed Drainage Crater Basins of the Martian Highlands: Constraints on the Early Martian Hydrologic Cycle', J. Geophys. Res. 103, 31, 421-31, 431.Google Scholar
  36. Franchi, I.A., Wright, I.P., Sexton, A.S., and Pillinger, C.T.: 1999, 'The Oxygen-isotopic Composition of Earth and Mars', Met. Planet. Sci. 34, 657-661.Google Scholar
  37. Friedman, Lentz, R.C., Taylor, G.J., and Treiman, A.H.: 1999, 'Formation of a Martian Pyroxenite: A Comparative Study of the Nakhlite Meteorites and Theo's Flow', Met. Planet. Sci. 34, 919-932.Google Scholar
  38. Garrels, R.M.: 1967, 'Genesis of Some Ground Waters from Igneous Rocks', in P.H. Abelson (ed.), Researches in Geochemistry Vol. 2, John Wiley, New York, pp. 405-420.Google Scholar
  39. Golden, D.C., Ming, W., Schwandt, C.S., Morris, R.V., Yang, S.V., and Lofgren, G.E.: 2000, 'An Experimental Study on Kinetically-driven Precipitation of Calcium-magnesium-iron Carbonates from Solution: Implications for the Low-temperature Formation of Carbonates in Martian Meteorite Allan Hills 84001.' Met. Planet. Sci. 35, 457-465.Google Scholar
  40. Gooding, J.L.: 1978, 'Chemical Weathering on Mars: Thermodynamic Stabilities of Primary Minerals and Their Alteration Products from Mafic Igneous Rocks', Icarus 33, 483-513.Google Scholar
  41. Gooding, J.L., and Muenow, D.W.: 1986, 'Martian Volatiles in Shergottite EETA79001: New Evidence from Oxidised Sulfur and Sulfur-rich Alumino-silicates', Geochim. Cosmochim. Acta 50, 1049-1059.Google Scholar
  42. Gooding, J.L., Wentworth, S.J. and Zolensky, M.E.: 1988, 'Calcium Carbonate and Sulfate of Possible Extraterrestrial Origin in the EETA79001 Meteorite', Geochim. Cosmochim. Acta 52, 909-916.Google Scholar
  43. Gooding, J.L, Wentworth, S.J., and Zolensky, M.E.: 1991, 'Aqueous Alteration of the Nakhla Meteorite', Meteoritics 26, 135-143.Google Scholar
  44. Grady, M.M., Wright, I.P., and Pillinger, C.T.: 1995, 'A Search for Nitrates in Martian Meteorites', J. Geophys. Res. 100, 5449-5455.Google Scholar
  45. Grady, M.M., Wright, I.P., and Pillinger, C.T.: 1997, 'A Carbon and Nitrogen Isotope Study of Zagami', J. Geophys. Res. 102, 9165-9173.Google Scholar
  46. Greenwood, J.P., Riciputi, L.R., and McSween, H.Y.: 1997, 'Sulfide Isotopic Compositions in Shergottites and ALH84001, and Possible Implications for Life on Mars', Geochim. Cosmochim. Acta 61, 4449-4453.Google Scholar
  47. Greenwood, J.P., Riciputi, L.R., McSween, H.Y., and Taylor, L.A.: 2000, 'Modified Sulfur Isotopic Compositions of Sulfides in the Nakhlites and Chassigny', Geochim. Cosmochim. Acta 64, 1121-1131.Google Scholar
  48. Gulick, V.C.: 1998, 'Magmatic Intrusions and a Hydrothermal Origin for Fluvial Valleys on Mars', J. Geophys. Res. 103, 19, 365-19, 388.Google Scholar
  49. Haberle, R.M., McKay, C.P., Schaeffer, J., Joshi, M., Cabrol, N.A. and Grin, E.A.: 2000, 'Meteorological Control on the Formation of Martian Paleolakes', Proc. 31 st Lunar Planet. Sci. Conf., abstract #1509 (CD-ROM).Google Scholar
  50. Hartmann, W.K.: 2001, 'Martian Seeps and Their Relation to Youthful Geothermal Activity', Space Sci. Rev., this volume.Google Scholar
  51. Harvey, R.P., and McSween, H.Y., Jr.: 1996, 'A Possible High-temperature Origin for the Carbonates in the Martian Meteorite ALH84001', Nature 382, 49-51.Google Scholar
  52. Head et al.: 2001, 'Geological Processes and Evolution', Space Sci. Rev., this volume.Google Scholar
  53. Herut, B., Starinsky, A., Katz, A., and Bein, A.: 1990, 'The Role of Seawater Freezing in the Formation of Subsurface Brines', Geochim. Cosmochim. Acta 54, 13-21.Google Scholar
  54. Holland, H.D.: 1978, 'The Chemistry of the Atmosphere and Oceans', John Wiley, New York, pp. 190-200.Google Scholar
  55. Holland, G., Lyon, I.C., Saxton, J.M., and Turner, G.: 2000, 'Very Low Oxygen-isotopic Ratios in Allan Hills 84001 Carbonates: A Possible Meteoric Component?', Met. Planet. Sci. 35, A76-77 (abstract).Google Scholar
  56. Ilg, S., Jessberger, E.K., and El Goresy, A.: 1997, '40Ar/39Ar Laser Extraction Dating of Individual Maskelynites in SNC Pyroxenite Allan Hills 84001', Met. Planet. Sci. 33, A65 (abstract).Google Scholar
  57. Jakosky, B.M.: 1993, 'Mars Volatile Evolution: Implications of the Recent Measurement of 17O in Water from SNC Meteorites', Geophys. Res. Lett. 20, 1591-1594.Google Scholar
  58. Jull, A.J.T., Eastoe, C.J., Xue, S., and Herzog, G.F.: 1995, 'Isotopic Composition of Carbonates in the SNC Meteorites ALH84001 and Nakhla', Meteoritics 30, 311-318.Google Scholar
  59. Jull, A.J.T., Eastoe, C.J., and Cloudt, S.: 1997, 'Isotopic Composition of Carbonates in the SNC Meteorites, Allan Hills 84001 and Zagami', J. Geophys. Res. 102, 1663-1669.Google Scholar
  60. Karlsson, H.R., Clayton, R.N., Gibson, E.K., Jr., and Mayeda, T.K.: 1992, 'Water in SNC Meteorites: Evidence for a Martian Hydrosphere', Science 255, 1409-1411.Google Scholar
  61. Kathie, L., Thomas-Keptra, D.A., Bazylinski, D.A., Kirschvink, J.L., Clemett, S.J., McKay, D.S., Wentworth, S.J., Hojatollah, V., Gibson, E.K., Jr., and Romanek, C.S.: 2000, 'Elongated Prismatic Magnetite Crystals in ALH84001 Carbonate Globules:P otential Martian Magnetofossils', Geochim. Cosmochim. Acta 64, 3933-4096.Google Scholar
  62. Knott, S.F., Ash, R.D., and Turner, G.: 1997, 40Ar-39Ar Dating of ALH84001: Evidence for the Early Bombardment of Mars', Proc. 27 th Lunar Planet. Sci. Conf., 765-766 (abstract).Google Scholar
  63. Kring, D.A., Swindle, T.D., Gleason, J.D., and Grier, J.A.: 1998, 'Formation and Relative Ages of Maskelynite and Carbonate in ALH84001', Geochim Cosmochim. Acta 62, 2155-2166.Google Scholar
  64. Leshin, L.A., Epstein, S., and Stolper, E.M.: 1996, 'Hydrogen Isotope Geochemistry of SNC Meteorites', Geochim. Cosmochim. Acta 60, 2635-2650.Google Scholar
  65. Leshin, L.A., McKeegan, K.D., Carpenter, P.K. and Harvey, R.P.: 1998, 'Oxygen Isotope Constraints on the Genesis of Carbonates from Martian Meteorite ALH84001', Geochim. Cosmochim. Acta 62,3-13.Google Scholar
  66. Lloyd, R.M.: 1966, 'Oxygen Isotope Enrichment of Seawater by Evaporation', Geochim. Cosmochim. Acta 30, 801-814.Google Scholar
  67. Malin, M.C., and Edgett, K.S.:2000a, 'Evidence for Recent Groundwater Seepage and Surface Runoff on Mars', Science 288, 2330-2335.Google Scholar
  68. Malin, M.C., and Edgett, K.S.:2000b, 'Sedimentary Rocks of Early Mars', Science 290, 1927-1937.Google Scholar
  69. McKay, D.S., Gibson, E.K., Jr., Thomas-Keptra, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chiller, X.D.F., Maechling, C.R., and Zare, R.N.: 1996, 'Search for Past Life on Mars: Possible Biogenic Activity in Martian Meteorite ALH84001', Science 273, 924-930.Google Scholar
  70. McSween, H.Y., and Harvey, R.P.: 1998, 'An Evaporation Model for the Formation of Carbonates in the ALH84001 Martian Meteorite', Intern. Geol. Rev. 40, 774-783.Google Scholar
  71. Melosh, H.J., and Vickery, A.M.: 1989, 'Impact Erosion of the Primordial Atmosphere of Mars', Nature 338, 487-489.Google Scholar
  72. Mittlefehldt, D.W.: 1994, 'ALH84001, a Cumulate Orthopyroxenite Member of the Martian Meteorite Clan', Meteoritics 29, 214-221.Google Scholar
  73. Moersch, J.E., Farmer, J., and Hook, S.J.: 2000, 'Detectability of Martian Evaporites Terrestrial Analog Studies with MASTER Data', Proc. 31 st Lunar Planet. Sci. Conf., abstract #2054 (CDROM).Google Scholar
  74. Moore, H.J., Bickler, D.B., Crisp, J.A., Eisen, H.J., Gensler, A., Haldemann, A.F.C., Matijevic, J.R., Reid, L.K. and Pavlics, F.: 1999, 'Soil-like Deposits Observed by Sojourner, and Pathfinder Rover', J. Geophys. Res. 104, 8729-8746.Google Scholar
  75. Morris, R.V., et al.: 2000, 'Mineralogy, Composition, and Alteration of Mars Pathfinder Rocks and Soils:E vidence from Multispectral, Elemental, and Magnetic Data on Terrestrial Analogue, SNC Meteorite, and Pathfinder Samples', J. Geophys. Res. 105, 1757-1817.Google Scholar
  76. Newsom, H.E., Hagerty, J.J., and Goff, F.: 1999, 'Mixed Hydrothermal Fluids and the Origin of the Martian Soil', J. Geophys. Res. 104, 8717-8728.Google Scholar
  77. Nyquist, L.E., Bogard, D.D., Shih, C.Y., Greshake, A., Stöffler, D., and Eugster, O.: 2001, 'Ages and Geologic Histories of Martian Meteorites', Space Sci. Rev., this volume.Google Scholar
  78. Owen, T.: 1992, The Composition and Early History of the Atmosphere of Mars, in H.H. Kieffer et al. (eds.), Mars, Univ. Arizona Press, Tucson, pp. 818-834.Google Scholar
  79. Reid, A.M., and Bunch, T.E.: 1975, The Nakhlites, Part II.Where,When and How?', Meteoritics 10, 317-324.Google Scholar
  80. Romanek, C.S., Grady, M.M., Wright, I.P., Mittlefehldt, D.W., Socki, R.A., Pillinger, C.T., and Gibson, E.K., Jr.: 1994, 'Record of Fluid-rock Interactions on Mars from the Meteorite ALH84001', Nature 372, 655-657.Google Scholar
  81. Romanek, C.S., Perry, E.C., Treiman, A.H., Sockim, R.A., Jones, J.H., and Gibson, E.K.: 1998, 'Oxygen Isotopic Record of Silicate Alteration in the Shergotty-Nakhla-Chassigny Meteorite Lafayette', Met. Planet. Sci. 33, 775-784.Google Scholar
  82. Ruff, S.W., et al.: 2000, 'Mars “White Rock” Feature Lacks Evidence of an Aqueous Origin', Proc. 31 st Lunar Planet. Sci. Conf., abstract #1945 (CD-ROM).Google Scholar
  83. Russell, M.J., Ingham, J.K., Zadef, V., Maktav, D., Sunar, F., Hall, A.J., and Fallick, A.E.: 1999, 'Search for Signs of Ancient Life on Mars: Expectations from Hydromagnesite Microbialites, Salda Lake, Turkey', J. Geol. Soc. 156, 869-888.Google Scholar
  84. Rye, R., Kuo, P.H., and Holland, H.D.: 1995, 'Atmospheric Carbon Dioxide Concentration Before 2.2 billion Years Ago', Nature 378, 603-605.Google Scholar
  85. Sawyer, D.J., McGehee, M.D., Canepa, J., and Moore, C.B.: 2000, 'Water Soluble Ions in the Nakhla Martian Meteorite', Met. Planet. Sci. 35, 743-747.Google Scholar
  86. Saxton, J.M., Lyon, I.C., and Turner, G.: 1998, 'Correlated Chemical and Isotopic Zoning in Carbonates in the Martian Meteorite ALH84001', Earth Planet. Sci. Lett. 160, 811-822.Google Scholar
  87. Saxton, J.M., Lyon, I.C., and Turner, G.:2000a, 'Ion Probe Studies of Deuterium/hydrogen in the Nakhlite Meteorites', Met. Planet. Sci. 35, A142-A143.Google Scholar
  88. Saxton, J.M., Lyon, I.C., Chatzitheodoridis, E., and Turner, G.:2000b, 'Oxygen Isotopic Composition of Carbonate in the Nakhla Meteorite: Implications for the Hydrosphere and Atmosphere of Mars', Geochim. Cosmochim. Acta 64, 1299-1309.Google Scholar
  89. Scott, E.R.D.: 1999, 'Origin of Carbonate-magnetite-sulfide Assemblages in Martian Meteorite ALH84001', J. Geophys. Res. 104, 3803-3813.Google Scholar
  90. Scott, E.R.D., Yamaguchi, A., and Krot, A.N.: 1997, 'Petrological Evidence for Shock Melting of Carbonates in the Martian Meteorite ALH84001', Nature 387, 377-379.Google Scholar
  91. Shih, C.-Y., Nyquist, L.E., Reese, Y., and Wiesmann, H.: 1998, 'The Chronology of the Nakhlite, Lafayette: Rb-Sr and Sm-Nd Isotopic Ages', Proc. 29th Lunar Planet. Sci. Conf., abstract #1145 (CD-ROM).Google Scholar
  92. Steele, A., Goddard, D.T., Stapleton, D., Toporski, J.K.W., Peters, V., Bassinger, V., Sharples, G., Wynn-Williams, D.D., and McKay, D.S.: 2000, 'Investigations Into an Unknown Organism on the Martian Meteorite Allan Hills 84001', Met. Planet. Sci. 35, 237-242.Google Scholar
  93. Stöffler, D., Ostertag, R., Jammes, C., Pfannschmidt, G., Sen Gupta, P.R., Simon, S.B., Papike, J.J., and Beauchamp, R.H.: 1986, 'Shock Metamorphism and Petrography of the Shergotty Achondrite', Geochim. Cosmochim. Acta 50, 889-903.Google Scholar
  94. Sugiura, N., and Hoshino, H.: 2000, 'Hydrogen Isotopic Composition of Allan Hills 84001 and the Evolution of the Martian Atmosphere', Met. Planet. Sci. 35, 373-380.Google Scholar
  95. Swindle, T.D., Treiman, A.H., Lindstrom, D.J., Burkland, M.K., Cohen, B.A., Grier, J.A., Li, B., and Olson, E.K.: 2000, 'Noble Gases in Iddingsite from the Lafayette Meteorite: Evidence for Liquid Water on Mars in the Last Few Hundred Million Years', Met. Planet. Sci. 35, 107-115.Google Scholar
  96. Treiman, A.H.: 1985, 'Amphibole and Hercynite Spinel in Shergotty and Zagami: Magmatic Water, Depth of Crystallization, and Metasomatism', Meteoritics 20, 229-243.Google Scholar
  97. Treiman, A.H.: 1995, 'A Petrographic History of Martian Meteorite ALH84001: Two Shocks and an Ancient Age', Meteoritics 30, 294-302.Google Scholar
  98. Treiman, A.H.:1998a, 'The History of Allan Hills 84001 Revised: Multiple shock events', Met. Planet. Sci. 33, 753-764.Google Scholar
  99. Treiman, A.H.:1998b, 'Amphiboles in More Martian Meteorites: Elephant Moraine 79001B, Elephant Moraine 79001X, and Lewis Cliff 88516', Met. Planet. Sci. 33, A156 (abstract).Google Scholar
  100. Treiman, A.H., Barrett, R.A., and Gooding, J.L.: 1993, 'Preterrestrial Alteration of the Lafayette (SNC) Meteorite', Meteoritics 28, 86-97.Google Scholar
  101. Turner, G., Knott, S.F., Ash, R.D., and Gilmour, J.D.: 1997, 'Ar-Ar Chronology of the Martian Meteorite ALH84001:Evidence for the Timing of the Early Bombardment of Mars', Geochim. Cosmochim. Acta 61, 3835-3850.Google Scholar
  102. Valley, J.W., Eiler, J.M., Graham, C.M., Gibson, E.K., Romanek, C.S., and Stolper, E.M.: 1997, 'Low-temperature Carbonate Concretions in the Martian Meteorite ALH84001:Evidence from Stable Isotopes and Mineralogy', Science 275, 1633-1637.Google Scholar
  103. Vicenzi, E.P., and Eiler, J.: 1998, 'Oxygen-isotopic Composition and High Resolution Secondary Ion Mass Spectrometry Imaging of Martian Carbonate in Lafayette Meteorite', Met. Planet. Sci. 33, A159-A160 (abstract).Google Scholar
  104. Wadhwa, M., and Crozaz, G.: 1995, 'Constraints on the Rare Earth Element Characteristics of Metasomatizing Fluids in the Martian Meteorite ALH84001' Proc. 26 th Lunar Planet. Sci. Conf., 1451-1452 (abstract).Google Scholar
  105. Wadhwa, M., and Lugmair, G.W.: 1996, 'The Formation Age of Carbonates in ALH84001', Met. Planet. Sci. vn 31, A145 (abstract).Google Scholar
  106. Wadhwa, M., Lentz, R.C.F., McSween, H.Y., and Crozaz, G.: 2000, 'Dar al Gani 476 and Dar al Gani 489, Twin Shergottites from Mars', Proc. 31 st Lunar Planet. Sci. Conf., abstract #1413 (CD-ROM).Google Scholar
  107. Wänke, H., Brückner, J., Dreibus, G., Rieder, R., and Ryabchikov, I.: 2001, 'Chemical Composition of Rocks and Soils at the Pathfinder Site', Space Sci. Rev., this volume.Google Scholar
  108. Warren, P.H.: 1998, 'Petrologic Evidence for Low-temperature, Possibly Flood Evaporitic Origin of Carbonates in the ALH84001 Meteorite', J. Geophys. Res. 103, 16, 759-16, 773.Google Scholar
  109. Watson, L.L., Hutcheon, I.D., Epstein, S. and Stolper, E.M.: 1994, 'Water on Mars:Clues from D/H and Water Contents of Hydrous Phases in SNC Meteorites', Science 265, 85-90.Google Scholar
  110. Wentworth, S.J., and Gooding, J.L.: 1994, 'Carbonates and Sulfates in the Chassigny Meteorite: Further Evidence for Aqueous Chemistry on the SNC Parent Planet', Meteoritics 29, 861-863.Google Scholar
  111. Wentworth, S.J., and Gooding, J.L.: 2000, 'Weathering and Secondary Minerals in the Martian Meteorite Shergotty', Proc. 31 st Lunar Planet. Sci. Conf., abstract #1888 (CD-ROM).Google Scholar
  112. Woods, T.L., and Garrels, R.M.: 1992, 'Calculated Aqueous Solution Solid-solution Relations in the Low Temperature System CaO-MgO-FeO-CO2-H2O', Geochim. Cosmochim. Acta 56, 3031-3043.Google Scholar
  113. Wright, I.P., Grady, M.M., and Pillinger, C.T.: 1988, 'Carbon, Oxygen and Nitrogen Isotopic Compositions of Possible Martian Weathering Products in EETA79001' Geochim. Cosmochim. Acta 52, 917-924.Google Scholar
  114. Wright, I.P., Grady, M.M., and Pillinger, C.T.: 1992, 'Chassigny and the Nakhlites:Carbon Bearing Components and Their Relationship to Martian Environmental Conditions', Geochim. Cosmochim. Acta 56, 817-826.Google Scholar
  115. Zahnle, K., Kasting, J.F., and Pollack, J.B.: 1990, 'Mass Fraction of Noble Gases in Diffusion-limited Hydrodynamic Escape', Icarus 84, 502-527.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • J.C. Bridges
    • 1
  • D.C. Catling
    • 2
  • J.M. Saxton
    • 3
  • T.D. Swindle
    • 4
  • I.C. Lyon
    • 3
  • M.M. Grady
    • 1
  1. 1.Department of MineralogyNatural History MuseumLondonUK
  2. 2.SETI Institute/NASA Ames Research CenterMoffett FieldUSA
  3. 3.Department of Earth SciencesManchester UniversityManchesterUK
  4. 4.Lunar and Planetary LaboratoryUniversity of ArizonaTucsonUSA

Personalised recommendations