Space Science Reviews

, Volume 96, Issue 1–4, pp 317–330

Chemical Composition of Rocks and Soils at the Pathfinder Site

  • H. Wänke
  • J. Brückner
  • G. Dreibus
  • R. Rieder
  • I. Ryabchikov
Article

Abstract

As Viking Landers did not measure rock compositions, Pathfinder (PF) data are the first in this respect. This review gives no proof yet whether the PF rocks are igneous or sedimentary, but for petrogenetic reasons they could be igneous. We suggest a model in which Mars is covered by about 50% basaltic and 50% andesitic igneous rocks. The soils are a mixture of the two with addition of Mg-sulfate and -chloride plus iron compounds possibly derived from the hematite deposits.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariskin, A., and Barmina, G.: 1999, 'An Empirical Model for the Calculation of Spinel-melt Equilibria in Mafic Igneous Systems at Atmospheric Pressure:2. Fe-Ti Oxides', Contrib. Mineral. Petrol. 134, 251-263.Google Scholar
  2. Ariskin, A.A., Frenkel, M.Y., Barmina, G.S., and Nielsen, R.L.: 1993, 'Comagmat: A FORTRAN Program to Model Magma Differentiation Processes', Comput. Geosci. 19, 1155-1170.Google Scholar
  3. Bandfield, J.L., Hamilton, V.E., and Christensen, P.R.: 2000, 'A Global View of Martian Surface Compositions from MGS-TES', Science 287, 1626-1630.Google Scholar
  4. Banin, A., Clark, B.C., and Wänke, H.: 1992, 'Surface Chemistry and Mineralogy', in H.H. Kieffer et al. (eds.), Mars, Univ. Arizona Press, Tucson, pp. 594-625.Google Scholar
  5. Bell, J.F., III, et al.: 2000, 'Mineralogic and Compositional Properties of Martian Soil and Dust: Results from Mars Pathfinder', J. Geophys. Res. 105, 1721-1755.Google Scholar
  6. Bogard, D.D., and Johnson, P.: 1983, 'Martian Gases in an Antarctic Meteorite', Science 221, 651-654.Google Scholar
  7. Brückner, J., Dreibus, G., Lugmair, G.W., Rieder, R., Wänke, H., and Economou, T.: 1999, 'Chemical Composition of the Martian Surface as Derived from Pathfinder, Viking, and Martian Meteorite Data', Proc. 30 th Lunar Planet. Sci. Conf., LPI, Houston, abstract #1250 (CD-ROM).Google Scholar
  8. Brückner, J., Dreibus, G., Rieder, R., and Wänke, H.: 2001, 'Revised Data of APXS Analyses of Soils and Rocks at the Pathfinder Site', in preparation.Google Scholar
  9. Christensen, P.R., et al.: 2000, 'Detection of Crystalline Hematite Mineralization on Mars by the Thermal Emission Spectrometer:E vidence for Near-surfaceWater', J. Geophys. Res. 105, 9623-9642.Google Scholar
  10. Clark, B.C., Baird, A.K., Weldon, R.J., Tsusaki, D.M., Schnabel, L., and Candelaria, M.P.: 1982, 'Chemical Composition of Martian Fines', J. Geophys. Res. 87, 10,059-10,067.Google Scholar
  11. Clark, B.C.: 1999, 'On the Non-observability of Carbonates on Mars', 5 th Int. Conf. on Mars, LPI Contrib. 972, LPI, Houston, abstract #6214 (CD-ROM).Google Scholar
  12. Crawford, A.J., Falloon, T.J., and Green, D.H.: 1989, 'Classification, Petrogenesis and Tectonic Setting of Boninites', in A.J. Crawford (ed.), Boninites and Related Rocks, Unwin and Hyman, pp. 1-49.Google Scholar
  13. Dreibus, G., and Wänke, H.: 1987, 'Volatiles on Earth and Mars: A Comparison', Icarus 71, 225-240.Google Scholar
  14. Dreibus, G., Ryabchikov, I., Rieder, R., Economou, T., Brückner, J., McSween, M.Y., Jr., and Wänke, H.: 1998, 'Relationship Between Rocks and Soil at the Pathfinder Landing Site and the Martian Meteorites', Proc. 29 th Lunar Planet. Sci., LPI, Houston, abstract #1348 (CD-ROM).Google Scholar
  15. Ghiorso, M.S., and Sack, R.S.: 1995, 'Chemical Mass Transfer in Magmatic Processes, IV. A Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of Liquid-solid Equilibria in Magmatic Systems at Elevated Temperatures and Pressures', Contrib. Mineral. Petrol. 119, 197-202.Google Scholar
  16. Golombek, M.P., et al.: 1999, 'Overview of the Mars Pathfinder Mission: Launch through Landing, Surface Operations, Data Sets, and Science Results', J. Geophys. Res. 104, 8523-8553.Google Scholar
  17. Haggerty, S.E.: 1978, 'The Redox State of Planetary Basalts', Geophys. Res. Lett. 5, 443-446.Google Scholar
  18. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., and Zanettin, B.: 1986, 'A Chemical Classification of Volcanic Rocks Based on the Total Alkali-silica Diagram', J. Petrol. 27, 745-750.Google Scholar
  19. McLennan, S.M.: 2000, 'Chemical Composition of Martian Soil and Rocks: Complex Mixing and Sedimentary Transport', Geophys. Res. Lett. 27, 1335-1338.Google Scholar
  20. McSween, H.Y., Jr.: 1994, 'What we Have Learned About Mars from SNC Meteorites', Meteoritics 29, 757-779.Google Scholar
  21. McSween, H.Y., Jr., et al.: 1999, 'Chemical, Multispectral, and Textural Constraints on the Composition and Origin of Rocks at the Mars Pathfinder Landing Site', J. Geophys. Res. 104, 8679-8715.Google Scholar
  22. McSween, H.Y., Jr., and Keil, K.: 2000, 'Mixing Relationships in the Martian Regolith and the Composition of Globally Homogeneous Dust', Geochim. Cosmochim. Acta 64, 2155-2166.Google Scholar
  23. Palme, H., Suess, H.E., and Zeh, H.D.: 1981, 'Abundances of the Elements in the Solar System', in K. Schaifers and H.H. Voigt (eds.), Landoldt-Börnstein 2, Springer, Berlin, pp. 257-273.Google Scholar
  24. Philpotts, A.R.: 1982, 'Compositions of Immiscible Liquids in Volcanic Rocks', Contrib. Mineral. Petrol. 80, 201-218.Google Scholar
  25. Rieder, R., Wänke, H., Economou, T., and Turkevich, A.: 1997a, 'Determination of the Chemical Composition of Martian Soil and Rocks:The Alpha Proton X-Ray Spectrometer', J. Geophys. Res. 102, 4027-4044.Google Scholar
  26. Rieder, R., Economou, T., Wänke, H., Turkevich, A., Crisp, J., Brückner, J., Dreibus, G., McSween, H.Y., Jr.: 1997b, 'The Chemical Composition of Martian Soil and Rocks Returned by the Mobile Alpha Proton X-ray Spectrometer:Preliminary Results from the X-ray Mode', Science 278, 1771-1774.Google Scholar
  27. Roedder, E.: 1951, 'Low Temperature Liquid Immiscibility in the System K2O-FeO-Al2O3-SiO2', Am. Mineral. 36, 282-286.Google Scholar
  28. Roedder, E.: 1992, 'Fluid Inclusion Evidence for Immiscibility in Magmatic Differentiation', Geochim. Cosmochim. Acta 56, 5-20.Google Scholar
  29. Roedder, E., and Weiblein, P.W.: 1970, 'Lunar Petrology of Silicate Melt Inclusions, Apollo 11 Rocks', Proc. Apollo 11 Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 1, 801-837.Google Scholar
  30. Ryabchikov, I.D., Solovova, I.P., Babansky, A.D., and Borsuk, A.M.: 1985, 'Origin and Differentiation Conditions of Strongly Reduced Andesitic Magmas', IZV. AN SSSR, ser. Geol. 10 (in Russian).Google Scholar
  31. Ryabchikov, I.D., and Wänke, H.: 1996, 'Magma Generation in Martian Mantle', Geochemistry International 34, 621-627.Google Scholar
  32. Stolper, E., and McSween, H.Y., Jr.: 1979, 'Petrology and Origin of the Shergottite Meteorites', Geochim. Cosmochim. Acta 43, 1475-1498.Google Scholar
  33. Surkov, Yu.A., Barsukov, V.L., Moskaleva, L.P., Kharyukova, V.P., Zaitseva, S.Ye., Smirnov, G.G., and Manvelyan, O.S.: 1989, 'Determination of the Elemental Composition of Martian Rocks from Phobos 2', Nature 341, 595-598.Google Scholar
  34. Walker, D., Stolper, E.M., and Hays, J.F.: 1979, 'Basaltic Volcanism: The Importance of Planet Size', Geochim. Cosmochim. Acta, Suppl. 11, 1995-2015.Google Scholar
  35. Wänke, H., and Dreibus, G.: 1988, 'Chemical Composition and Accretion History of Terrestrial Planets', Phil. Trans. R. Soc. Lond. A325, 545-557.Google Scholar
  36. Wänke, H., and Dreibus, G.: 1994, 'Chemistry and Accretion History of Mars', Phil. Trans. R. Soc. Lond. A349, 295-293.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • H. Wänke
    • 1
  • J. Brückner
    • 1
  • G. Dreibus
    • 1
  • R. Rieder
    • 1
  • I. Ryabchikov
    • 2
  1. 1.Max-Planck-Institut für ChemieMainzGermany
  2. 2.IGEM, Russian Academy of SciencesMoscowRussia

Personalised recommendations