Journal of Automated Reasoning

, Volume 27, Issue 4, pp 391–421 | Cite as

Resolution for Skeptical Stable Model Semantics

  • P. A. Bonatti
Article

Abstract

An extension of resolution for skeptical stable model semantics is introduced. Unlike previous approaches, our calculus is not derived from credulous inference and enjoys a number of properties that are not satisfied by current nonmonotonic reasoning systems. Skeptical resolution is top down, in general, and goal directed on call-consistent programs. It does not need the given program to be instantiated before reasoning. It may compute nonground answer substitutions efficiently. It is compatible with different implementations of negation as failure. Some inferences, which depend on nonground negative goals, can be drawn without resorting to negation-as-failure; as a consequence, many goals that flounder in the standard setting have a successful skeptical derivation. The paper contains a preliminary study of some interesting derivation strategies and a sketch of a prototype implementation of the calculus.

stable semantics skeptical derivations resolution floundering strategies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apt, K. R., Bol, R.W., and Klop, J. W.: On the safe termination of Prolog programs, in G. Levi and M. Martelli (eds.), Proc. 6th ICLP, Mit Press, 1989, pp. 353–368.Google Scholar
  2. 2.
    Bell, C., Nerode, A., Ng, R., and Subrahmanian, V. S.: Implementing stable semantics by linear programming, in Proc. LPNMR'93, MIT Press, 1993, pp. 23–42.Google Scholar
  3. 3.
    Bonatti, P.: Autoepistemic logics as a unifying framework for the semantics of logic programs, J. Logic Programming 22(2) (1995), 91–149.Google Scholar
  4. 4.
    Bonatti, P. A.: Sequent calculi for default and autoepistemic logics, in Proc. TABLEAUX'96, LNAI 1071, Springer-Verlag, Berlin, 1996, pp. 127–142.Google Scholar
  5. 5.
    Bonatti, P. A.: Resolution for skeptical stable semantics, in [11].Google Scholar
  6. 6.
    Bonatti, P. A. and Olivetti, N.: A sequent calculus for skeptical default logic, in Proc. TABLEAUX'97, LNAI 1227, Springer-Verlag, 1997, pp. 107–121.Google Scholar
  7. 7.
    Bonatti, P. A. and Olivetti, N.: A sequent calculus for circumscription, in Proc. CSL'97, LNCS 1414, Springer-Verlag, 1998, pp. 98–114.Google Scholar
  8. 8.
    Chen, W. and Warren, D. S.: Tabled evaluation with delaying for general logic programs, JACM 43(1) (1996), 20–74.Google Scholar
  9. 9.
    Chen, W. and Warren, D. S.: Computation of stable models and its integration with logical query processing, IEEE TKDE 8(5) (1996), 742–757.Google Scholar
  10. 10.
    Comon, H.: Disunification: A survey, in J. L. Lassez and G. Plotkin (eds.), Computational Logic-Essays in Honor of Alan Robinson, MIT Press, 1991.Google Scholar
  11. 11.
    Dix, J., Furbach, U., and Nerode, A.: Logic Programming and Nonmonotonic Reasoning: 4 th International Conference, LPNMR'97, LNAI 1265, Springer-Verlag, Berlin, 1997.Google Scholar
  12. 12.
    Dung, P. M.: On the relation between stable and well-founded semantics of logic programs, Theoret. Comput. Sci. 105 (1992), pp. 7–25.Google Scholar
  13. 13.
    Gelfond, M. and Lifschitz, V.: The stable model semantics for logic programming, in Proc. 5 th ICLP, MIT Press, 1988, pp. 1070–1080.Google Scholar
  14. 14.
    Gottlob, G., Marcus, S., Nerode, A., Salzer, G., and Subrahmanian, V. S.: A non-ground realization of the stable and well-founded semantics, TCS 166 (1996), 221–262.Google Scholar
  15. 15.
    Lifschitz, V. and Turner, H.: Splitting a logic program, in Proc. ICLP'94, MIT Press, 1994, pp. 23–37.Google Scholar
  16. 16.
    Lloyd, J. W.: Foundations of Logic Programming, Springer-Verlag, 1984.Google Scholar
  17. 17.
    Marek,W. and Truszczy´nski, M.: Computing intersection of autoepistemic expansions, in Proc. LPNMR'91, MIT Press, 1991, pp. 37–52.Google Scholar
  18. 18.
    Niemela, I. and Simons, P.: Efficient implementation of the well-founded and stable model semantics, in Proc. JICSLP 96, MIT Press, 1996, pp. 289–303.Google Scholar
  19. 19.
    Niemelä, I. and Simons, P.: SMODELS-an implementation of the stable model and wellfounded semantics for normal LP, in [11].Google Scholar
  20. 20.
    Schaub, T. and Thielscher, M.: Skeptical query answering in constrained default logic, in Proc. Conference on Formal and Applied Practical Reasoning (FAPR'96), 1996, pp. 567–581.Google Scholar
  21. 21.
    Schlipf, J. S.: The expressive powers of the logic programming semantics, J. Comput. System Sci. 51 (1995), 64–86.Google Scholar
  22. 22.
    Subrahmanian, V. S., Nau, D. and Vago, C.: WFS+Branch and bound=Stable models, IEEE TKDE 7(3) (1995), 362–377.Google Scholar
  23. 23.
    Van Gelder, A., Ross, K. A. and Schlipf, J. S.: The well-founded semantics for general logic programs, J. ACM 38(3) (1991), 620–650.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • P. A. Bonatti
    • 1
  1. 1.Dip. di Tecnologie dell'InformazioneUniversità di MilanoCremaItaly

Personalised recommendations