Pharmaceutical Research

, Volume 15, Issue 10, pp 1579–1588 | Cite as

Epidermal Iontophoresis: II. Application of the Ionic Mobility-Pore Model to the Transport of Local Anesthetics

  • Pamela M. Lai
  • Michael S. Roberts


Purpose. An in vitro study was carried out to determine the iontophoretic permeability of local anesthetics through human epidermis. The relationship between physicochemical structure and the permeability of these solutes was then examined using an ionic mobility-pore model developed to define quantitative relationships.

Methods. The iontophoretic permeability of both ester-type anesthetics (procaine, butacaine, tetracaine) and amide-type anesthetics (prilocaine, mepivacaine, lidocaine, bupivacaine, etidocaine, cinchocaine) were determined through excised human epidermis over 2 hrs using a constant d.c. current and Ag/AgCl electrodes. Individual ion mobilities were determined from conductivity measurements in aqueous solutions. Multiple stepwise regression was applied to interrelate the iontophoretic permeability of the solutes with their physical properties to examine the appropriateness of the ionic mobility-pore model and to determine the best predictor of iontophoretic permeability of the local anesthetics.

Results. The logarithm of the iontophoretic permeability coefficient (log PC j , iont ) for local anesthetics was directly related to the log ionic mobility and MW for the free volume form of the model when other conditions are held constant. Multiple linear regressions confirmed that log PC j , iont was best defined by ionic mobility (and its determinants: conductivity, pKa and MW) and MW.

Conclusions. Our results suggest that of the properties studied, the best predictors of iontophoretic transport of local anesthetics are ionic mobility (or pKa) and molecular size. These predictions are consistent with the ionic mobility pore model determined by the mobility of ions in the aqueous solution, the total current, epidermal permselectivity and other factors as defined by the model.

iontophoresis local anesthetics ionic mobility pore model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. S. Roberts, J. Singh, N. Yoshida, and K. I. Currie. Iontophoretic transport of selected solutes through human epidermis. In R. C. Scott, J. Hadgraft and R. Guy (eds.), Prediction of Percutaneous Absorption; IBC Technical Services Ltd, London, 1990, pp. 231-241.Google Scholar
  2. 2.
    J. B. Phipps and J. R. Gyory. Transdermal ion migration. Adv. Drug Del. Rev. 9: 137-176 (1992).Google Scholar
  3. 3.
    N. H. Yoshida and M. S. Roberts. Solute molecular size and transdermal iontophoresis across excised human skin. J. Contr. Rel. 25:177-195 (1993).Google Scholar
  4. 4.
    M. S. Roberts, P. M. Lai, and Y. G. Anissimov. Epidermal iontophoresis: I. Development of the ionic mobility-pore model. Pharm. Res. 15:1569-1578 (1998).PubMedGoogle Scholar
  5. 5.
    N. H. Yoshida and M. S. Roberts. Structure-transport relations in transdermal iontophoresis. Adv. Drug Del. Rev. 9:239-264 (1992).Google Scholar
  6. 6.
    M. J. Pikal. The role of electroosmotic flow in transdermal iontophoresis. Adv. Drug Del. Rev. 9:201-237 (1992).Google Scholar
  7. 7.
    W. M. Deen. Hindered transport of large molecules in liquid-filled pores. AIChE J. 33:1409-1425 (1987).Google Scholar
  8. 8.
    W. D. Munch, L. P. Zestar, and J. L. Anderson. Rejection of polyelectrolytes from microporous membranes. J. Membr. Sci. 5:77-102 (1979).Google Scholar
  9. 9.
    A. Martin, J. Swarbrick, and A. Cammarata. Physical Pharmacy 3rd ed., Lea & Febiger, Philadelphia, 1983.Google Scholar
  10. 10.
    A. M. Kligman and E. Christophers. Preparation of isolated sheets of human stratum corneum. Arth. Dermatol. 88:702-705 (1963).Google Scholar
  11. 11.
    R. D. Purves. Accuracy of numerical inversion of Laplace transforms for pharmacokinetic parameter estimation. J. Pharm. Sci. 84:71-74 (1995).PubMedGoogle Scholar
  12. 12.
    S. Dinh, C. W. Luo, and B. Berner. Upper and lower limits of human skin electrical resistance in iontophoresis. AIChE J. 39:2011-2018 (1993).Google Scholar
  13. 13.
    S. K. Li, A. H. Ghanem, K. D. Peck, and W. I. Higuchi. Iontophoretic Transport across a synthetic membrane and human epidermal membrane: a study of the effects of permeant charge. J. Pharm. Sci. 86:680-689, 1997.PubMedGoogle Scholar
  14. 14.
    S. B. Ruddy and B. A. Hadzija. Iontophoretic permeability of polyethylene glycols through hairless rat skin: application of hydrodynamic theory for hindered transport through liquid-filled pores. Drug Des. Discovery 8:207-224 (1992).Google Scholar
  15. 15.
    S. H. Yalkowsky and G. Zografi. Calculation of partial molal volume in micellar systems. J. Pharm. Sci. 61:793-795 (1972).PubMedGoogle Scholar
  16. 16.
    J. Vinter, A. Davis, M. Saunders, and N. Van Openbosch. Computation and Structure Manipulation In Chemistry (COSMIC). SKF & Wellcome 1978–1986.Google Scholar
  17. 17.
    H. Sjöberg, K. Karami, P. Beronius, and L. O. Sundelöf. Ionization conditions for iontophoretic drug delivery. A revised pKa of lidocaine hydrochloride in aqueous solution at 25°C established by precision conductometry. Int. J. Pharm. 141:63-70 (1996).Google Scholar
  18. 18.
    M. Polásek, B. Gas, T. Hirokawa, and J. Vacik. Determination of limiting ionic mobilities and dissociation constants of some local anaesthetics. J. Chromatograph. 596:265-270 (1992).Google Scholar
  19. 19.
    M. C. Heit, A. McFarland, R. Bock, and J. E. Riviere. Isoelectric focusing and capillary zone electrophoretic studies using luteinizing hormone releasing hormone and its analog. J. Pharm Sci. 83:654-656 (1994).PubMedGoogle Scholar
  20. 20.
    N. H. Yoshida and M. S. Roberts. Role of conductivity in iontophoresis, 2. Anodal iontophoretic transport of phenylethylamine and sodium across excised human skin. J. Pharm. Sci. 83:344-350 (1994).PubMedGoogle Scholar
  21. 21.
    N. H. Yoshida and M. S. Roberts. Prediction of cathodal iontophoretic transport of various anions across excised skin from different vehicles using conductivity measurements. J. Pharm. Pharmacol. 47:883-890 (1995).PubMedGoogle Scholar
  22. 22.
    L. P. Gangarosa, N. H. Park, B. C. Fong, D. F. Scott, and J. M. Hill. Conductivity of drugs used for iontophoresis. J. Pharm. Sci. 67:1439-1443 (1978).PubMedGoogle Scholar
  23. 23.
    S. S. Kamath and L. P. Gangarosa, Sr. Electrophoretic evaluation of the mobility of drugs suitable for iontophoresis. Meth. Find. Exp. Clin. Pharmacol. 17:227-232 (1995).Google Scholar
  24. 24.
    O. Siddiqui, M. S. Roberts, and A. E. Polack. Iontophoretic transport of weak electrolytes through the excised human stratum corneum. J. Pharm. Pharmacol. 41:430-432 (1989).PubMedGoogle Scholar
  25. 25.
    J. Hirvonen and R. H. Guy. Iontophoretic delivery across the skin: electroosmosis and its modulation by drug substances. Pharm. Res. 14:1258-1263 (1997).PubMedGoogle Scholar
  26. 26.
    M. B. Delgado-Charro and R. H. Guy. Characterization of convective solvent flow during iontophoresis. Pharm. Res. 11:929-935 (1994).PubMedGoogle Scholar
  27. 27.
    M. J. Pikal and S. Shah. Transport mechanisms in iontophoretisis. II. Electroosmotic flow and transference number measurements for hairless mouse skin. Pharm. Res. 7:213-221 (1990).PubMedGoogle Scholar
  28. 28.
    P. M. Lai and M. S. Roberts. Iontophoresis. In M. S. Roberts and K. Walters (eds), Dermatological Formulations and Toxicology, Marcel Dekker. In press.Google Scholar
  29. 29.
    G. T. Tucker and L. E. Mather. Properties, absorption, and disposition of local anesthetic agents. In M. J. Cousins and P. O. Bridenbaugh (eds), Neural Blockade in Clinical Anesthesia and Management of Pain 2nd ed, J.B. Lippincott Co., Philadelphia 1988 Chap. 2.Google Scholar
  30. 30.
    W. C. Bowman and M. J. Rand. Textbook of Pharmacology 2nd Ed., Blackwell Scientific Publications, Oxford 1980 p. 40.4.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Pamela M. Lai
    • 1
  • Michael S. Roberts
    • 1
  1. 1.Department of MedicineUniversity of Queensland, Princess Alexandra HospitalBrisbaneAustralia

Personalised recommendations