Pharmaceutical Research

, Volume 16, Issue 4, pp 494–502 | Cite as

Antisense Pharmacodynamics: Critical Issues in the Transport and Delivery of Antisense Oligonucleotides

  • R. L. JulianoEmail author
  • S. Alahari
  • H. Yoo
  • R. Kole
  • M. Cho


This review critically examines current understanding of the kinetics and biodistribution of antisense oligonucleotides, both at the cellular level and at the level of the intact organism. The pharmacodynamic relationships between biodistribution and the ultimate biological effects of antisense agents are considered. The problems and advantages inherent in the use of delivery systems are discussed in the light of further enhancing in vivo pharmacological actions of oligonucleotides.

antisense oligonucleotides drug delivery pharmacodynamics biodistribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Wittung-Stafshede. Genetic medicine—when will it come to the drugstore. Science 281:657–658 (1998).Google Scholar
  2. 2.
    A. M. Gewirtz. Developing oligonucleotide therapeutics for human leukemia. Anti-Cancer Drug Design 12:341–358 (1997).Google Scholar
  3. 3.
    J. C. Reed. Promise and problems of Blc-2 antisense therapy. J. Natl. Cancer Inst. 89:988–990 (1997).Google Scholar
  4. 4.
    P. T. Ho and D. R. Parkinson. Antisense oligonucleotides as therapeutics for malignant diseases. Semin. Oncol. 24:187–202 (1997).Google Scholar
  5. 5.
    D. Robertson. Crohn's trial shows the pros of antisense. Nat. Biotechnol. 15:209 (1997).Google Scholar
  6. 6.
    J. Summerton and D. Weller. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Devel. 7:187–195 (1997).Google Scholar
  7. 7.
    M. Matteucci. Structural modifications toward improved antisense oligonucleotides. Drug Discovery and Design 4:1–16 (1996).Google Scholar
  8. 8.
    K. L. Fearon, B. L. Hirschbein, C. Y. Chiu, M. R. Quijano, and G. Zon. Phosphorothioate oligodeoxynucleotides: large synthesis and analysis, impurity characterization, and the effects of phosphorus stereochemistry. Ciba Found. Symp. 209:19–31 (1997).Google Scholar
  9. 9.
    J. F. Milligan, M. D. Matteucci, and J. C. Martin. Current concepts in antisense drug design. Med. Chem. 36:1923–1937 (1993).Google Scholar
  10. 10.
    C. A. Stein and Y.-C. Cheng. Antisense oligonucleotides as therapeutic agents-is the bullet really magical. Science 261:1004–1012 (1993).Google Scholar
  11. 11.
    S. T. Crooke. Advances in understanding the pharmacological properties of antisense oligonucleotides. Adv. Pharmacol. 40:1–49 (1997).Google Scholar
  12. 12.
    S. Agrawal and R. P. Iyer. Perspectives in antisense therapeutics. Pharmacol. Ther. 76:151–160 (1997).Google Scholar
  13. 13.
    S. Akthar and S. Agrawal. In vivo studies with antisense oligonucleotides. Trends Pharmacol. Sci. 18:12–18 (1997).Google Scholar
  14. 14.
    C. F. Bennett. Antisense oligonucleotides: Is the glass half full or half empty? Biochem. Pharmacol. 55:9–19 (1998).Google Scholar
  15. 15.
    A. D. Branch. A good antisense molecule is hard to find. Trends in Biological Sci. 23:45–50 (1998).Google Scholar
  16. 16.
    J. H. Lin and A. Y. Lu. Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol. Rev. 49:403–449 (1997).Google Scholar
  17. 17.
    C. A. Stein and A. M. Krieg. Problems in interpretation of data derived from in vitro and in vivo use of antisense oligodeoxynucleotides. Antisense Res. Dev. 4:67–69 (1994).Google Scholar
  18. 18.
    C. A. Stein. How to design an antisense oligodeoxynucleotide experiment: a consensus approach. Antisense Nucleic Acid Drug Dev. 8:129–132 (1998).Google Scholar
  19. 19.
    A. D. Branch. Antisense drug discovery: can cell-free screens speed the process? Antisense Nucleic Acid Drug Dev. 8:249–254 (1998).Google Scholar
  20. 20.
    A. D. Ellington and J. W. Szostak. Selection in vitro of single-stranded DNA molecules that fold into specific lingand-binding structures. Nature 355:850–852 (1992).Google Scholar
  21. 21.
    T. L. Burgess, E. F. Fisher, S. L. Ross, J. V. Bready, Y. X. Qian, L. A. Bayewitch, A. M. Cohen, C. J. Herrera, S. S. Hu, and T. B. Kramer. The antiproliferative activity of c-myb and c-myc antisense oligonucleotides in smooth muscle cells is caused by a nonantisense mechanism. Proc. Natl. Acad. Sci. USA 92:4051–4055 (1995).Google Scholar
  22. 22.
    Y. Castier, E. Chemla, J. Nieerat, D. Heudes, M. A. Vasseur, C. Rajnoch, P. Bruneval, A. Carpentier, and J. N. Fabiani. The activity of c-myb antisense oligonucleotide to prevent intimal hyperplasia is nonspecific. J. Cardiovasc. Surg. 39:1–7 (1998).Google Scholar
  23. 23.
    A. M. Krieg, A. K. Yi, S. Matson, T. J. Waldschmidt, G. A. Bishop, R. Teasdale, G. A. Koretzky, and D. M. Klinman. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546–549 (1995).Google Scholar
  24. 24.
    W. M. Galbraith, W. C. Hobson, P. C. Giclas, P. J. Schechter, and S. Agrawal. Complement activation and hemodynamic changes following intravenous administration of phosphorothioate oligonucleotides in the monkey. Antisense Res. Dev. 4:201–206 (1994).Google Scholar
  25. 25.
    J. L. Vaerman, P. Moureau, F. Deldime, P. Lewalle, C. Lammineur, F. Morschhauser, and P. Martiat. Antisense oligonucleotide deoxyribonucleotides suppress hematologic cell growth through stepwise release of deoxyribonucleotides. Blood 90:331–339 (1997).Google Scholar
  26. 26.
    S. T. Crooke and C. F. Bennett. Progress in antisense oligonucleotide therapeutics. Ann. Rev. Pharmacol. Toxicol. 36:107–129 (1996).Google Scholar
  27. 27.
    J. M. Kean, S. A. Kipp, P. S. Miller, M. Kulka, and L. Aurelian. Inhibition of herpes simplex virus replication by antisense oligo-2′-O-methylribonucleoside methylphosphonates. Biochemistry 34:14617–14620 (1995).Google Scholar
  28. 28.
    H. Sierakowska, M. J. Sambade, S. Agrawal, and R. Kole. Repair of thalassemic human beta-globin mRNA in mammalian cells by antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 93:12840–12844 (1996).Google Scholar
  29. 29.
    B. F. Baker, S. S. Lot, T. P. Condon, S. Cheng-Flournoy, E. A. Lesnik, H. M. Sasmor, and C. F. Bennett. 2′-O-(2-Methoxy)ethyl-modified anti-intercellular adhesion molecule (ICAM-1) oligonucleotides selectively increase the ICAM-1 mRNA level and inhibit formation of the ICAM-1 translation initiation complex in human umbilical vein endothelial cells. J. Biol. Chem. 272:11994–12000 (1997).Google Scholar
  30. 30.
    S. Akhtar and R. L. Juliano. Cellular uptake and intracellular fate of antisense oligonucleotides. Trends in Cell Biology 2:139–143 (1992).Google Scholar
  31. 31.
    G. D. Gray, S. Basu, and E. Wickstrom. Transformed and immortalized cellular uptake of oligodeoxynucleoside phosphorothioates, 3′-alkylamino oligodeoxynucleotides, 2′-O-methyl oligoribonucleotides, oligodeoxynucleoside and methylphosphonates, and peptide nucleic acids. Biochem. Pharmacol. 53:1465–1476 (1997).Google Scholar
  32. 32.
    Y. Shoji, S. Akhtar, A. Periasamy, B. Herman, and R. L. Juliano. Mechanism of cellular uptake of modified oligodeoxynucleotides containing methylphosphonate linkages. Nucleic Acids Res. 19:5543–5550 (1991).Google Scholar
  33. 33.
    J. P. Leonetti, N. Mechti, G. Degols, C. Gagnor, and B. LeBleu. Intracellular distribution of microinjected antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 88:2702–2706 (1991).Google Scholar
  34. 34.
    T. L. Fisher, T. Terhorst, X. Cao, and R. W. Wagner. Intracellular disposition and metabolism of fluorescently-labeled unmodified oligonucleotides microinjected into mammalian cells. Nucleic Acids Res. 21:3857–3865 (1993).Google Scholar
  35. 35.
    J. A. Hughes, A. V. Avrutska, A. Aronson, and R. L. Juliano. Evaluation of adjuvants that enhance the effectiveness of antisense oligonucleotides. Pharm. Res. 13:404–410 (1996).Google Scholar
  36. 36.
    P. J. Gonzalez-Cabrera, P. L. Iversen, M. F. Liu, M. A. Scofield, and W. B. Jeffries. Selective inhibition of alpha1B-adrenergic receptor expression and function using a phosphorothioate antisense oligodeoxynucleotide. Mol. Pharmacol. 53:1034–1039 (1998).Google Scholar
  37. 37.
    R. I. Mahato, Y. Takakura, and M. Hashida. Development of targeted delivery systems for nucleic acid drugs. J. Drug Target 4:337–357 (1997).Google Scholar
  38. 38.
    C. F. Bennett, M. Y. Chiang, H. Chan, J. E. Shoemaker, and C. K. Mirabelli. Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol. Pharmacol. 41:1023–1033 (1992).Google Scholar
  39. 39.
    M. J. Hope, B. Mui, S. Ansell, and Q. F. Ahkong. Cationic lipids, phosphatidylethanolamine and the intracellular delivery of polymeric, nucleic acid-based drugs. Mol. Membr. Biol. 15:1–14 (1998).Google Scholar
  40. 40.
    I. Koltover, T. Salditt, J. O. Rädler, and C. R. Safinya. An inverted hexagonal phase of cationic liposome — DNA complexes related to DNA release and delivery. Science 281:78–81 (1998).Google Scholar
  41. 41.
    O. Zelphati and F. C. Szoka, Jr. Mechanism of oligonucleotide release from cationic liposomes. Proc. Natl. Acad. Sci. USA 93:11493–11498 (1996).Google Scholar
  42. 42.
    E. G. Marcusson, B. Bhat, M. Manoharan, C. F. Bennett, and N. M. Dean. Phosphorothioate oligodeoxyribonucleotides dissociate from cationic lipids before entering the nucleus. Nucleic Acids Res. 26:2016–2023 (1998).Google Scholar
  43. 43.
    P. C. Gokhale, V. Soldatenkov, F. H. Wang, A. Rahman, A. Dritschilo, and U. Kasid. Antisense raf oligodeoxyribonucleotide is protected by liposomal encapsulation and inhibits Raf-1 protein expression in vitro and in vivo: implication for gene therapy of radioresistant cancer. Gene Ther. 4:1289–1299 (1997).Google Scholar
  44. 44.
    O. Meyer, D. Kirpotin, K. Hong, B. Sternberg, J. W. Park, M. C. Woodle, and D. Papahajopoulos. Cationic liposomes coated with polyethylene glycol as carriers for oligonucleotides. J. Biol. Chem. 273:15621–15627 (1998).Google Scholar
  45. 45.
    J. Zabner, A. J. Fasbender, T. Moninger, K. A. Poellinger, and M. J. Welsh. Cellular and molecular barriers to gene transfer by a cationic lipid. J. Biol. Chem. 270:18997–19007 (1995).Google Scholar
  46. 46.
    S. Basu and E. Wickstrom. Synthesis and characterization of a peptide nucleic acid conjugated to a D-peptide analog of insulin-like growth factor 1 for increased cellular uptake. Bioconjug. Chem. 8:481–488 (1997).Google Scholar
  47. 47.
    A. S. Bachmann, A. Surovoy, G. Jung, and K. Moelling. Integrin receptor-targeted transfer peptides for efficient delivery of antisense oligodeoxynucleotides. J. Mol. Med. 76:126–132 (1998).Google Scholar
  48. 48.
    J.-P. Bongartz, A.-M. Aubertin, P. G. Milhaud, and B. Lebleu. Improved biological activity of antisense oligonucleotides conjugated to a fusogenic peptide. Nucleic Acids Res. 22:4681–4688 (1994).Google Scholar
  49. 49.
    T. B. Wyman, F. Nicol, O. Zelphati, P. V. Scaria, C. Plank, and J. Szoka, F.C. Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry 36:3008–3017 (1997).Google Scholar
  50. 50.
    C. Picheon, K. Arar, A. J. Stewart, M. D. Dodon, L. Gazzolo, P. J. Courtoy, R. Mayer, M. Monsigny, and A. C. Roche. Intracellular routing and inhibitory activity of oligonucleopeptides containing a KDEL motif. Mol. Pharmacol. 51:431–438 (1997).Google Scholar
  51. 51.
    Y.-Z. Lin, S. Y. Yao, R. A. Veach, T. R. Torgerson, and J. Hawiger. Inhibition of nuclear translocation of transcription factor NF-κB by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J. Biol. Chem. 270:14255–14258 (1995).Google Scholar
  52. 52.
    G. Elliott and P. O'Hare. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88:223–233 (1997).Google Scholar
  53. 53.
    D. Derossi, A. H. Joliot, G. Chassaing, and A. Prochiantz. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269:10444–10450 (1994).Google Scholar
  54. 54.
    J. Haensler and F. C. Szoka, Jr. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjugate Chem. 4:372–379 (1993).Google Scholar
  55. 55.
    R. DeLong, K. Stephenson, T. Loftus, S. K. Alahari, M. H. Fisher, and R. L. Juliano. Characterization of complexes of oligonucleotides with polyamidoamine starburst dendrimers and effects on intracellular delivery. J. Pharm. Sci. 86:762–764 (1997).Google Scholar
  56. 56.
    S. K. Alahari, R. K. DeLong, M. Fisher, N. M. Dean, P. Viliet, and R. J. Juliano. Novel chemically modified oligonucleotides provide potent inhibition of P-glycoprotein expression. J. Pharmacol. Exp. Ther. 286:419–428 (1998).Google Scholar
  57. 57.
    S. K. Alahari, N. M. Dean, M. H. Fisher, R. DeLong, M. Manoharan, K. L. Tivel, and R. L. Juliano. Inhibition of expression of the multi-drug resistance associated P-glycoprotein by phosphorothioate and 5′ cholesterol-phosphorothioate antisense oligonucleotides. Mol. Pharmacol. 50:808–819 (1996).Google Scholar
  58. 58.
    D. G. Spiller, R. V. Giles, J. Grzybowski, D. M. Tidd, and R. E. Clark. Improving the intracellular delivery and molecular efficacy of antisense oligonucleotides in chronic myeloid leukemia cells: a comparison of streptolysin-O permeabilization, electroporation, and lipophilic conjugation. Blood 91:4738–4746 (1998).Google Scholar
  59. 59.
    G. Schwab, C. Chavany, I. Duroux, G. Goubin, J. Lebeau, C. Helene, and T. Saison-Behmoaras. Antisense oligonucleotides adsorbed to polyalkylcyanoacrylate nanoparticles specifically inhibit mutated Ha-ras-mediated cell proliferation and tumorigenicity in nude mice. Proc. Natl. Acad. Sci. USA 91:10460–10464 (1994).Google Scholar
  60. 60.
    H. P. Zobel, J. Kreuter, D. Werner, C. R. Noe, G. Kumel, and A. Zimmer. Cationic polyhexylcyanoacrylate nanoparticles as carriers for antisense oligonucleotides. Antisense Nucleic Acid Drug Dev. 7:483–493 (1997).Google Scholar
  61. 61.
    E. Fattal, C. Vauthier, I. Aynie, Y. Nakada, G. Lambert, C. Malvy, and P. Couvreur. Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides. J. Contr. Rel. 53:137–143 (1998).Google Scholar
  62. 62.
    R. Kole. Modification of pre-mRNA splicing by antisense oligonucleotides. In Applied Antisense Oligonucleotide Technology, ed. by C. A. Stein and A. M. Krieg, Willey-Liss, Inc., pp. 451–469 (1998).Google Scholar
  63. 63.
    G. Hartmann, A. Krug, M. Bidlingmaier, U. Hacker, A. Eigler, R. Albrecht, C. J. Strasburger, and S. Endres. Spontaneous and cationic lipid-mediated uptake of antisense oligonucleotides in human monocytes and lymphocytes. J. Pharmacol. Exp. Ther. 285:920–928 (1998).Google Scholar
  64. 64.
    R. Kronenwett, U. Steidl, M. Kirsch, G. Sczakiel, and R. Haas. Oligodeoxyribonucleotide uptake in primary human hematopoietic cells is enhanced by cationic lipids and depends on the hematopoietic cell subset. Blood 91:852–862 (1998).Google Scholar
  65. 65.
    N. Dean, R. McKay, L. Miraglia, R. Howard, S. Cooper, J. Giddings, P. Nicklin, L. Meister, R. Ziel, T. Geiger, M. Muller, and D. Fabbro. Inhibition of growth of human tumor cell lines in nude mice by an antisense oligonucleotide inhibitor of protein kinase C-expression. Cancer Res. 56:3499–3507 (1996).Google Scholar
  66. 66.
    Y. S. Cho-Chung, M. Nesterova, A. Kondrashin, K. Noguchi, R. Srivastava, and S. Pepe. Antisense-protein kinase A: a singlegene based therapeutic approach. Antisense Nucleic Acid Drug Dev. 7:217–223 (1997).Google Scholar
  67. 67.
    T. Skorski, D. Perrotti, M. Nieborowska-Skorska, S. Grayaznov, and B. Calabretta. Antileukemia effect of c-myc N3′ → P5′ phosphoramidate antisense oligonucleotides in vivo. Proc. Natl. Acad. Sci. USA 94:3966–3971 (1997).Google Scholar
  68. 68.
    B. Jansen, H. Schlagbauer-Wadl, B. D. Brown, R. N. Bryan, A. van Elsas, M. Muller, K. Wolff, H. G. Eichler, and H. Pehamberger. bcl-2 Antisense therapy chemosensitizes human melanoma in SCID mice. Nat. Med. 4:232–234 (1998).Google Scholar
  69. 69.
    C. F. Bennett, D. Kornbrust, S. Henry, K. Stecker, R. Howard, S. Cooper, S. Dutson, W. Hall, and H. I. Jacoby. An ICAM-1 antisense oligonucleotide prevents and reverses dextran sulfate sodium-induced colitis in mice. J. Pharmacol. Exp. Ther. 280:988–1000 (1997).Google Scholar
  70. 70.
    J. W. Nyce and W. J. Metzger. DNA antisense therapy for asthma in an animal model. Nature 385:721–725 (1997).Google Scholar
  71. 71.
    M. Sugano, N. Makino, S. Sawada, S. Otsuka, M. Watanabe, H. Okamoto, M. Kamada, and A. Mizushima. Effect of antisense oligonucleotides against cholesteryl ester transfer protein on the development of atherosclerosis in cholesterol-fed rabbits. J. Biol. Chem. 273:5033–5036 (1998).Google Scholar
  72. 72.
    J. Gunn, C. M. Holt, S. E. Francis, L. Shepherd, M. Grohmann, C. M. Newman, D. C. Crossman, and D. C. Cumberland. The effect of oligonucleotides to c-myb on vascular smooth muscle cell proliferation and neointima formation after porcine coronary angioplasty. Circ. Res. 80:520–531 (1997).Google Scholar
  73. 73.
    N. Galeottia, C. L. Ghelardini, S. Capaccioli, A. Quattrone, and A. Bartolini. An antisense oligonucleotide on the mouse Shaker-like potassium channel Kv1.1 gene prevents antinociception induced by morphine and baclofen. J. Pharmacol. Exp. Ther. 281:941–949 (1997).Google Scholar
  74. 74.
    N. M. Dean and R. McKay. Inhibition of protein kinase C-alpha expression in mice after systemic administration of phosphorothioate antisense oligodeoxynucleotides. Proc. Natl. Acad. Sci. USA 91:11762–11766 (1994).Google Scholar
  75. 75.
    M. Nesterova and Y. S. Cho-Chung. A single-injection protein kinase A-directed antisense treatment to inhibit tumour growth. Nature Med. 1:528–533 (1995).Google Scholar
  76. 76.
    C. Hagios, A. Lochter, and M. J. Bissell. Tissue architecture: the ultimate regulator of epithelial function? Philos. Trans. R. Soc. Lond. B. Biol. Sci. 353:857–870 (1998).Google Scholar
  77. 77.
    C. D. Roskelley, P. Y. Desprez, and M. J. Bissell. Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proc. Natl. Acad. Sci. USA 91:12378–12382 (1994).Google Scholar
  78. 78.
    B. St. Croix and R. S. Kerbel. Cell adhesion and drug resistance in cancer. Curr. Opin. Oncol. 6:549–556 (1997).Google Scholar
  79. 79.
    R. B. Diasio and R. Zhang. Pharmacology of therapeutic oligonucleotides. Antisense Nucleic Acid Drug Dev. 7:239–243 (1997).Google Scholar
  80. 80.
    J. Temsamani, A. Roskey, C. Chaix, and S. Agrawal. In vivo metabolic profile of a phosphorothioate oligodeoxyribonucleotide. Antisense Nucleic Acid Drug Dev. 7:159–165 (1997).Google Scholar
  81. 81.
    J. M. Glover, J. M. Leeds, T. G. K. Mant, D. Amin, D. L. Kisner, J. E. Zuckerman, R. S. Geary, A. A. Levin, and J. Shanahan, W.R. Phase I safety and pharmacokinetic profile of an intercellular adhesion molecule-1 antisense oligodeoxynucleotide (ISIS 2302). J. Pharmacol. Exp. Ther. 282:1173–1180 (1997).Google Scholar
  82. 82.
    M. K. Bijsterbosch, M. Manoharan, E. T. Rump, R. L. De Vrueh, R. van Veghel, K. L. Tivel, E. A. Biessen, C. F. Bennett, P. D. Cook, and T. J. vann Berkel. In vivo fate of phosphorothioate antisense oligodeoxynucleotides: predominant uptake by scavenger receptors on endothelial liver cells. Nucleic Acids Res. 25:3290–3296 (1997).Google Scholar
  83. 83.
    E. A. Biessen, H. Vietsch, J. Kuiper, M. K. Bijsterbosch, and T. J. Berkel. Liver uptake of phosphodiester oligodeoxynucleotides is mediated by scavenger receptors. Mol. Pharmacol. 53:262–269 (1998).Google Scholar
  84. 84.
    R. K. DeLong, A. Nolting, M. Fisher, Q. Chen, E. Wickstrom, M. Klingshteyn, S. Demirdji, M. Caruthers, and R. L. Juliano. Comparative pharmacokinetics, tissue distribution and tumor accumulation, of phosphorothioate, phosphorodithioate and methylphosphonate deoxyoligonucleotide analogues in nude mice. Antisense Nucleic Acid Drug Dev. 7:71–77 (1997).Google Scholar
  85. 85.
    S. Agrawal, Z. Jiang, Q. Zhao, D. Shaw, D. Cai, A. Roskay, L. Channavajjala, C. Saxinger, and R. Zhang. Mixed-backbone oligonucleotides as second generation antisense oligonucleotides: in vitro and in vivo studies. Proc. Natl. Acad. Sci. USA 94:2620–2625 (1997).Google Scholar
  86. 86.
    S. T. Crooke, M. J. Graham, J. E. Zuckerman, D. Brooks, B. S. Conklin, L. L. Cummins, M. J. Greig, C. J. Guinosso, D. Kornbrust, M. Manoharan, H. M. Sasmor, T. Schleich, K. L. Tivel, and R. H. Griffey. Pharmacokinetic properties of several novel oligonucleotide analogs in mice. J. Pharmacol. Exp. Ther. 277:923–937 (1996).Google Scholar
  87. 87.
    S. Agrawal and R. Zhang. Pharmacokinetics of oligonucleotides. Ciba Found. Symp. 209:60–78 (1997).Google Scholar
  88. 88.
    A. Nolting, R. K. DeLong, M. H. Fisher, E. Wickstrom, G. M. Pollack, R. L. Juliano, and K. L. Brouwer. Hepatic distribution and clearance of antisense oligonucleotides in the isolated perfused rat liver. Pharm. Res. 14:516–521 (1997).Google Scholar
  89. 89.
    J. A. Hughes, A. V. Avrutskaya, K. L. Brouwer, E. Wickstrom, and R. L. Juliano. Radiolabeling of methylphosphonate and phosphorothioate oligonucleotides and evaluation of their transport in everted rat jejunum sacs. Pharm. Res. 12:817–824 (1995).Google Scholar
  90. 90.
    M. J. Graham, S. T. Crooke, D. K. Monteith, S. R. Cooper, K. M. Lemonidis, K. K. Stecker, M. J. Martin, and R. M. Crooke. In vivo distribution and metabolism of a phosphorothioate oligonucleotide within rat liver after intravenous administration. J. Pharmacol. Exp. Ther. 286:447–458 (1998).Google Scholar
  91. 91.
    M. Butler, K. Stecker, and C. F. Bennett. Cellular distribution of phosphorothioate oligodeoxynucleotides in normal rodent tissues. Lab. Invest. 77:379–388 (1997).Google Scholar
  92. 92.
    A. Rifai, W. Brysch, K. Fadden, J. Clark, and K. H. Schlingensiepen. Clearance kinetics, biodistribution, and organ saturability of phosphorothioate oligodeoxynucleotides in mice. Am. J. Pathol. 2:717–725 (1996).Google Scholar
  93. 93.
    B. P. Monia. First-and second-generation antisense inhibitors targeted to human c-raf kinase: in vitro and in vivo studies. Anticancer Drug Des. 12:327–339 (1997).Google Scholar
  94. 94.
    H. Wu, A. R. MacLoed, W. F. Lima, and S. T. Crooke. Identification and partial purification of human double strand RNase activity. A novel terminating mechanism for oligoribonucleotide antisense drugs. J. Biol. Chem. 273:2532–2542 (1998).Google Scholar
  95. 95.
    N. Milner, K. U. Mir, and E. M. Southern. Selecting effective antisense reagents on combinatorial oligonucleotide arrays. Nat. Biotechnol. 15:537–541 (1997).Google Scholar
  96. 96.
    S. P. Ho, Y. Bao, T. Lesher, R. Malhotra, L. Y. Ma, S. J. Fluharty, and R. R. Sakai. Mapping of RNA accessible sites for antisense experiments with oligonucleotide libraries. Nat. Biotechnol. 16:59–63 (1998).Google Scholar
  97. 97.
    G. Dreyfuss, M. J. Matunis, S. Pinol-Roma, and C. G. Burd. hnRNP proteins and the biogenesis of mRNA. Ann. Rev. Biochem. 62:289–321 (1993).Google Scholar
  98. 98.
    S. A. McLuckey. Focus on oligonucleotides. J. Am. Soc. Mass Spectrometry 9:659 (1998).Google Scholar
  99. 99.
    R. H. Griffey, M. J. Greig, H. J. Gaus, K. Liu, D. Montheith, M. Winniman, and L. L. Gummins. Characterization of oligonucleotide metabolism in vivo via liquid chromatography/electrospray tandem mass spectrometry with a quadrupole ion trap mass spectrometer. J. Mass. Spectrom. 32:305–313 (1997).Google Scholar
  100. 100.
    H. J. Gaus, S. R. Owens, M. Winniman, S. Cooper, and L. L. Cummins. Online HPLC electrospray mass spectrometry of phosphorothioate oligonucleotide metabolites. Anal. Chem. 69:313–319 (1997).Google Scholar
  101. 101.
    J. A. Phillips, S. J. Craig, D. Bayley, R. A. Christian, R. Geary, and P. L. Nicklin. Pharmacokinetics, metabolism, and elimination of a 20-mer phosphorothioate oligodeoxynucleotide (CGP 69846A) after intravenous and subcutaneous administration. Biochem. Pharmacol. 54:657–668 (1997).Google Scholar
  102. 102.
    R. W. Ball and L. C. Packman. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry as a rapid quality control method in oligonucleotide synthesis. Anal. Biochem. 246:185–194 (1997).Google Scholar
  103. 103.
    R. L. Rill, B. R. Locke, Y. Liu, and D. H. Van Einkle. Electrophoresis in lyotropic polymer liquid crystals. Proc. Natl. Acad. Sci. USA 95:1534–1539 (1998).Google Scholar
  104. 104.
    J. M. Leeds, S. P. Henry, S. Bistner, S. Scherrill, K. Williams, and A. A. Levin. Pharmacokinetics of an antisense oligonucleotide injected intravitreally in monkeys. Drug Metab. Dispos. 26:670–675 (1998).Google Scholar
  105. 105.
    L. Reyderman and S. Stavchansky. Pharmacokinetics and biodistribution of a nucleotide-based thrombin inhibitor in rats. Pharm. Res. 15:904–910 (1998).Google Scholar
  106. 106.
    C. Gelfi, M. Perego, S. Morelli, A. Nicolin, and P. G. Righetti. Analysis of antisense oligonucleotides by capillary electrophoresis, gel-slab electrophoresis, and HPLC: a comparison. Antisense Nucleic Acid Drug Dev. 6:47–53 (1996).Google Scholar
  107. 107.
    S. H. Kang, M. J. Cho, and R. Kole. Upregulation of the luciferase gene expression: a novel asay for intracellular activity of antisense oligonucleotides. Biochemistry 37:6235–6239 (1998).Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • R. L. Juliano
    • 1
    Email author
  • S. Alahari
    • 1
  • H. Yoo
    • 1
  • R. Kole
    • 1
    • 2
  • M. Cho
    • 3
  1. 1.Department of PharmacologyUniversity of North CarolinaChapel Hill
  2. 2.Lineberger Cancer Center, University of North CarolinaChapel Hill
  3. 3.School of PharmacyUniversity of North CarolinaChapel Hill

Personalised recommendations