Studia Logica

, Volume 68, Issue 1, pp 143–152 | Cite as

Three Complexity Problems in Quantified Fuzzy Logic

  • Franco Montagna


We prove that the sets of standard tautologies of predicate Product Logic and of predicate Basic Logic, as well as the set of standard-satisfiable formulas of predicate Basic Logic are not arithmetical, thus finding a rather satisfactory solution to three problems proposed by Hájek in [H01].

many valued logics predicate logics undecidability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ba96]
    M. Baaz, 'Infinite-valued Gödel logics with 0-1 projections and relativizations', GÖDEL'96-Logical foundations of mathematics, computer science and physics, Lecture Notes in Logic 6 (1996), P. Hájek ( ed.), Springer Verlag, pp. 23-33.Google Scholar
  2. [CEGT99]
    R. Cignoli, F. Esteva, L. Godo, A. Torrens, 'Basic fuzzy logic is the logic of continuous t-norms and their residua', to appear in Soft Computing.Google Scholar
  3. [CMO00]
    R. Cignoli, D. Mundici, I.M.L. D'Ottaviano, Algebraic Foundations of Many-Valued Reasoning, Kluwer 2000.Google Scholar
  4. [H98]
    P. HÁjek, Metamathematics of Fuzzy Logic, Kluwer, 1998.Google Scholar
  5. [H95]
    P. HÁjek, 'Fuzzy logic and arithmetical hierarchy', Fuzzy Sets and Systems 73 (1995), 359-363.Google Scholar
  6. [H97]
    P. HÁjek, 'Fuzzy logic and arithmetical hierarchy II', Studia Logica 58 (1997), 129-141.Google Scholar
  7. [H01]
    P. HÁjek, 'Fuzzy logic and arithmetical hierarchy III', Studia Logica 68 (2001), 129-142.Google Scholar
  8. [R81]
    M. E. Ragaz, Arithmetische Klassification von Formelnmenge der unendlichwertigen Logik, ETH Zürich, (1981) Thesis.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Franco Montagna
    • 1
  1. 1.Dipartimento di MatematicaSiena

Personalised recommendations