Journal of Thrombosis and Thrombolysis

, Volume 11, Issue 3, pp 183–193

Plasminogen Activator Inhibitor Type-1 (Part One): Basic Mechanisms, Regulation, and Role for Thromboembolic Disease

  • Kurt Huber
Article

Abstract

Plasminogen activator inhibitor type-1 (PAI-1) is a rapid inhibitor of tissue plasminogen activator (tPA) in circulation. Evidence suggests that the PAI-1 concentration is responsible for the regulation of the endogenous fibrinolytic system through its tPA/PAI-1 interactions. Accordingly, increased levels of PAI-1 have emerged as a masker for an increased thrombolic risk. This article represents a status report of mechansism of action, regulation of plasma levels, as well as the role of PAI-1 in arterial and venous thromboembolic disease.

PAI-1 regulation thromboembolic disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van Meijer M, Pannekoek H. Structure of plasminogen activator inhibitor 1 (PAI-1) and its function in fibrinolysis: an update. Fibrinolysis 1995;9:263–276.Google Scholar
  2. 2.
    Alessi MC, Chomiki N, Berthier R, Schweitzer A, Fossat C, Juhan-Vague I. Detection of plasminogen activator-inhibitor-1 (PAI-1) mRNA in human megakaryocytes by in situ hybridization. Thromb Haemost 1994;72:933–936.Google Scholar
  3. 3.
    Fay WP, Eitzman DT, Shapiro AD, Madison EL, Ginsburg D. Platelets inhibit fibrinolysis in vitro by both plasminogen activator-dependent and-independent mechanisms. Blood 1994;83:351–356.PubMedGoogle Scholar
  4. 4.
    Stringer HA, van Swieten P, Heijnen HF, Sixma JJ, Pannekoek H. Plasminogen activator inhibitor-1 released from activated platelets plays a key role in the thrombolysis resistance: studies with thrombi generated in the Chandler loop. Arterioscler 1994;4:1452–1458.Google Scholar
  5. 5.
    Booth NA, Simpson AH, Croll A, Bennett B, MacGregor IR. Plasminogen activator inhibitor (PAI-1) in plasma and platelets. Br J Haematol 1998;70:327–333.Google Scholar
  6. 6.
    Nordenhem A, Wiman B. Plasminogen activator inhibitor-1 (PAI-1) content in platelets from healthy individuals genotyped for the 4G/5G polymorphism in the PAI-1 gene. Scand J Clin Lab Invest 1997;57:453–462.PubMedGoogle Scholar
  7. 7.
    Lang IM, Schleef RR. Calcium-dependent stabilization of type-1 plasminogen activator inhibitor within platelet alpha-granules. J Biol Chem 1996;271:2754–2761.CrossRefPubMedGoogle Scholar
  8. 8.
    Cigolini M, Targher G, Bergamo Andreis IA, Tonoli M, Agostino G, De Sandre G. Visceral fat accumulation and its relation to plasma haemostatic factors in healthy men. Arterioscler Thromb Vasc Biol 1996;16:368–374.PubMedGoogle Scholar
  9. 9.
    Alessi MC, Peiretti F, Morange P, Henry M, Nalbone G, Juhan-Vague I. Production of plasminogen activator inhibitor-1 by human adipose tissue: possible link between visceral fat accumulation and vascular disease. Diabetes 1997;46:860–867.PubMedGoogle Scholar
  10. 10.
    Loskutoff DJ, Samad F. The adipocyte and hemostatic balance in obesity. Studies of PAI-1. Arterioscler Thromb Vasc Biol 1998;18:1–6.PubMedGoogle Scholar
  11. 11.
    Kooistra T, Sprengers ED, van Hinsbergh VWH. Rapid inactivation of the plasminogen-activator inhibitor upon secretion from cultured human endothelial cells. Biochem J 1986;239:497–503.PubMedGoogle Scholar
  12. 12.
    Uchiyama T, Kurabayashi M, Ohyama Y, et al. Hypoxia induces transcription of the plasminogen activator inhibitor-1 gene through genistein-sensitive tyrosine kinase pathways in vascular endothelial cells. Arterioscler Thromb Vasc Biol 2000;20:1155–1161.PubMedGoogle Scholar
  13. 13.
    Vaughan DE. Fibrinolytic balance, the renin-angiotensin system and atherosclerotic disease. Eur Heart J 1998;19:G9–G12.PubMedGoogle Scholar
  14. 14.
    Saksela O, Rifkin DB. Cell-associated plasminogen activation: regulation and physiologic function. Am Rev Cell Biol 1998;4:93–126.Google Scholar
  15. 15.
    Booth NA, Bennett B, Wijngaards G, Grieve JH. A new life-long hemorrhagic disorder due to excess plasminogen activator. Blood 1983;61:267–275.PubMedGoogle Scholar
  16. 16.
    Aznar J, Estelles A, Vila V, Reganon E, Espana F, et al. Inherited fibrinolytic disorder due to an enhanced plasminogen activator level. Thromb Haemost 1984;52:196–200.PubMedGoogle Scholar
  17. 17.
    Dieval J, Nguyen G, Gross S, Delobel J, Kruithof EK. A lifelong bleeding disorder associated with a defi-ciency of plasminogen activator inhibitor type 1. Blood 1991;77:528–532.PubMedGoogle Scholar
  18. 18.
    Fay WP, Shapiro AD, Shih JL, Schleef RR, Ginsburg D. Brief report: complete deficiency of plasminogen activator inhibitor type 1 due to a frame shift mutation. N Engl J Med 1992;327:1729–1733.PubMedGoogle Scholar
  19. 19.
    Dawson S, Henney A. The status of PAI-1 as a risk factor for arterial and thrombotic disease. Atherosclerosis 1992;95:105–117.PubMedGoogle Scholar
  20. 20.
    Wiman B. Plasminogen activator inhibitor 1 (PAI-1) in plasma: its role in thrombotic disease. Thromb Haemost 1995;74:71–76.PubMedGoogle Scholar
  21. 21.
    Rallidis LS, Megalou AA, Papageorgakis NH, Trikas AG, Chatzidimitriou GI, Tsitouris GK. Plasminogen activator inhibitor 1 is elevated in the children of men with premature myocardial infarction. Thromb Haemost 1996;76:417–421.PubMedGoogle Scholar
  22. 22.
    Klinger KW, Winquist R, Riccio A, et al. Plasminogen activator inhibitor type 1 gene is located at region q21.3–q22 of chromosome 7 and genetically linked with cystic fibrosis. Proc Natl Acad Sci USA 1987;84:8548–8552.PubMedGoogle Scholar
  23. 23.
    Dawson S, Hamsten A, Wiman B, Henney A, Humphries S. Genetic variation at the plasminogen activator inhibitor-1 locus is associated with altered levels of plasma plasminogen activator inhibitor-1 activity. Arterioscler Thromb 1991;11:183–190.PubMedGoogle Scholar
  24. 24.
    Dawson SJ, Wiman B, Hamsten A, Grenn F, Humphries S, Henney AM. The two allele sequences of a common polymorphism in the promoter of the plasminogen activator inhibitor-1 (PAI-1) gene respond differently to interleukin-1 in HepG2 cells. J Biol Chem 1993;268:10739–10745.PubMedGoogle Scholar
  25. 25.
    Ye S, Green FR, Scarabin PY, et al. The 4G/5G genetic polymorphism in the promoter of the plasminogen activator inhibitor-1 (PAI-1) gene is associated with differences in plasma PAI-1 activity but not with risk of myocardial infarction in the ECTIM study. Thromb Haemost 1995;74:837–841.PubMedGoogle Scholar
  26. 26.
    Falk G, Almquist A, Nordenhem A, Svensson H, Wiman B. Allele specific PCR for detection of a sequence polymorphism in the promoter region of the plasminogen activator inhibitor-1 (PAI-1) gene. Fibrinolysis 1995;9:170–174.Google Scholar
  27. 27.
    Panahloo A, Mohamed-Ali V, Lane A, Green F, Humphries SE, Yudkin JS. Determinants of plasminogen activator inhibitor 1 activity in treated NIDDM and its relation to a polymorphism in the plasminogen activator inhibitor 1 gene. Diabetes 1995;44:37–42.PubMedGoogle Scholar
  28. 28.
    Mansfield MW, Stickland MH, Grant PJ. Environmental and genetic factors in relation to elevated circulating levels of plasminogen activator inhibitor-1 in Caucasian patients with non insulin-dependent diabetes mellitus. Thromb Haemost 1995;74:842–847.PubMedGoogle Scholar
  29. 29.
    Margaglione M, Capucci G, d'Addedda M, et al. PAI-1 plasma levels in a general population without clinical evidence of atherosclerosis. Relation to environmental and genetic determinants. Arterioscler Thromb Vasc Biol 1998;18:562–567.PubMedGoogle Scholar
  30. 30.
    Burzotta F, Di Castelnuovo A, Amore C, et al. 4G/5G promoter PAI-1 gene polymorphism is associated with plasmatic PAI-1 activity in Italians: A model of gene-environment interaction. Thromb Haemost 1998;79:354–358.PubMedGoogle Scholar
  31. 31.
    Benza RL, Grenett H, Li X-N, et al. Gene polymorphisms for PAI-1 are associated with the angiographic extent of coronary artery disease. J Thromb Thrombolysis 1998;5:143–150.CrossRefPubMedGoogle Scholar
  32. 32.
    Eriksson P, Kallin B, van't Hooft FM, Bavenholm P, Hamsten A. Allele specific increase in basal transcription of the plasminogen-activator inhibitor 1 gene is associated with myocardial infarction. Proc Natl Acad Sci USA 1995;92:1851–1855.PubMedGoogle Scholar
  33. 33.
    Ossei-Gerning N, Mansfield MW, Stickland MH, Wilson IJ, Grant PJ. Plasminogen activator inhibitor-1 promoter 4G/5G genotype and plasma levels in relation to a history of myocardial infarction in patients characterized by coronary angiography. Arterioscler Thromb Vasc Biol 1997;17:33–37.PubMedGoogle Scholar
  34. 34.
    Margaglione M, Capucci G, Colaizzo D, et al. The PAI-1 gene locus 4G/5G polymorphism is associated with a family history of coronary artery disease. Arterioscler Thromb Vasc Biol 1998;18:152–156.PubMedGoogle Scholar
  35. 35.
    Benza RL, Grenett HE, Bourge R, et al. Gene polymorphisms for plasminogen activator inhibitor-1/tissue plasminogen activator and development of allograft coronary artery disease. Circulation 1998;98:2248–2254.PubMedGoogle Scholar
  36. 36.
    Stegnar M, Uhrin P, Peternel P, et al. The 4G/5G sequence polymorphism in the promoter of plasminogen activator inhibitor-1 (PAI-1) gene: Relationship to plasma PAI-1 level in venous thromboembolism. Thromb Haemost 1998;79:975–979.PubMedGoogle Scholar
  37. 37.
    Zöller B, Garcia de Frutos P, Dahlbäck B. A common 4G allele in the promotor of the plasminogen activator inhibitor-1 (PAI-1) gene as a risk factor for pulmonary embolism and arterial thrombosis in hereditary protein S deficiency. Thromb Haemost 1998;79:802–807.PubMedGoogle Scholar
  38. 38.
    Ridker PM, Hennekens CH, Lindpaintner K, Stampfer MJ, Miletich JP. Arterial and venous thrombosis is not associated with the 4G/5G polymorphism in the promoter of the plasminogen activator inhibitor gene in a large cohort of US men. Circulation 1997;95:59–62.PubMedGoogle Scholar
  39. 39.
    Henry M, Tregouet DA, Alessi MC, et al. Metabolic determinants are much more important than genetic polymorphisms in determining the PAI-1 activity and antigen plasma concentration: A family study with part of the Stanislas Cohort. Arterioscler Thromb Vasc Biol 1998;18:84–91.PubMedGoogle Scholar
  40. 40.
    Pyörä lä K, Laakso M, Uusitupa M. Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab Rev 1987;3:463–524.PubMedGoogle Scholar
  41. 41.
    Reaven GM, Lithell H, Landsberg L. Hypertension and associated metabolic abnormalities: the role of insulin resistance and the sympathoadrenal system. N Engl J Med 1996;334:374–381.CrossRefPubMedGoogle Scholar
  42. 42.
    Laakso M. Insulin resistance and coronary heart disease. Curr Opin Lipidol 1996;7:217–226.PubMedGoogle Scholar
  43. 43.
    Despres JP, Lamarche B, Mauriege P, et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med 1996;334: 952–957.CrossRefPubMedGoogle Scholar
  44. 44.
    Juhan-Vague I, Vague P. Hypofibrinolysis and insulin resistance. Diabet Metabol 1991;17:96–100.Google Scholar
  45. 45.
    Andersen P, Arnesen H, Hjermann I. Hyperlipoproteinemia and reduced fibrinolytic activity in healthy coronary high risk men. Acta Med Scand 1981;209:199–202.PubMedGoogle Scholar
  46. 46.
    Vague P, Juhan-Vague I, Alessi MC, Badier C, Valadier J. Metformin decreases the high plasminogen activator inhibitor capacity plasma insulin and triglyceride levels in non diabetic obese subjects. Thromb Haemostas 1987;57:326–328.Google Scholar
  47. 47.
    Landin K, Tengborn L, Smith U. Elevated fibrinogen and plasminogen activator inhibitor (PAI-1) in hypertension are related to metabolic risk factors for cardiovascular disease. J Intern Med 1990;227:273–278.PubMedGoogle Scholar
  48. 48.
    Andersen P. Hypercoagulability and reduced fibrinolysis in hyperlipidemia: relationship to the metabolic cardiovascular syndrome. J Cardiovasc Pharmacol 1992;20:S29–S31.Google Scholar
  49. 49.
    Mussoni L, Mannucci L, Sitori M, et al. Hypertriglyceridemia and regulation of fibrinolytic activity. Arterioscler Thromb 1992;12:19–27.PubMedGoogle Scholar
  50. 50.
    Potter van Loon BJ, Kluft C, Radder JK, Blankenstein MA, Meinders AE. The cardiovascular risk factor plasminogen activator inhibitor type 1 is related to insulin resistance. Metabolism 1993;42:945–949.CrossRefPubMedGoogle Scholar
  51. 51.
    Asplund-Carlsson A, Hamsten A, Wiman B, Carlsson LA. Relationship between plasma plasminogen activator inhibitor-1 activity and VLDL triglyceride concentration, insulin levels and insulin sensitivity: studies in randomly selected normoand hypertriglyceridemic men. Diabetologia 1993; 36:817–825.CrossRefPubMedGoogle Scholar
  52. 52.
    Juhan-Vague I, Thompson SG, Jespersen J. On behalf of the ECAT Angina Pectoris Study Group. Involvement of the hemostatic system in the insulin resistance syndrome: a study of 1500 patients with angina pectoris. Arterioscler Thromb 1993;13:1865–1873.PubMedGoogle Scholar
  53. 53.
    Cigolini M, Targher G, Seidell JC, et al. Relationships of plasminogen activator inhibitor-1 to anthropometry, serum insulin, triglycerides and adipose tissue fatty acids in healthy men. Atherosclerosis 1994;106:139–147.PubMedGoogle Scholar
  54. 54.
    Mykkänen L, Rönnemaa T, Marniemi J, Haffner SM, Bergman R, Laakso M. Insulin sensitivity is not an independent determinant of plasminogen activator inhibitor-1 activity. Arterioscler Thromb 1994;14:1264–1271.PubMedGoogle Scholar
  55. 55.
    Eliasson M, Asplund K, Evrin P-E, Lindahl B, Lundblad D. Hyperinsulinemia predicts low tissue plasminogen activator activity in a healthy population: the Northern Sweden MONICA study. Metabolism 1994;43:1579–1586.CrossRefPubMedGoogle Scholar
  56. 56.
    Gray RP, Mohamed-Ali V, Patterson DLH, Yudkins JS. Determinants of plasminogen activator inhibitor-1 activity in survivors of myocardial infarction. Thromb Haemost 1995;73:261–267.PubMedGoogle Scholar
  57. 57.
    Toft I, Bonaa K, Ingebretsen O, Nordoy A, Birkeland K, Jenssen T. Gender differences in the relationships between plasma plasminogen activator inhibitor-1 activity and factors linked to the insulin resistance syndrome in essential hypertension. Arterioscler Thromb Vasc Biol 1997;17:553–559.PubMedGoogle Scholar
  58. 58.
    Gray RP, Panahloo A, Mohamed-Ali V, Patterson DL, Yudkin JS. Proinsulin-like molecules and plasminogen activator inhibitor type 1 (PAI-1) activity in diabetic and non-diabetic subjects with and without myocardial infarction. Atherosclerosis 1997;130:171–178.CrossRefPubMedGoogle Scholar
  59. 59.
    Alessi MC, Juhan-Vague I, Kooistra T, Declerck PJ, Collen D. Insulin stimulates the synthesis of plasminogen activator inhibitor 1 by the human hepatocellular cell line HepG2. Thromb Haemost 1988;60: 491–494.PubMedGoogle Scholar
  60. 60.
    Kooistra T, Bosma PJ, Töns HAM, van den Berg AP, Meyer P, Princen HMG. Plasminogen activator inhibitor 1: biosynthesis and mRNA level are increased by insulin in cultured human hepatocytes. Thromb Haemost 1989;62:723–728.PubMedGoogle Scholar
  61. 61.
    Stiko-Rahm A, Wiman B, Hamsten A, Nilsson J. Secretion of plasminogen activator inhibitor-1 from cultured human umbilical vein endothelial cells is induced by very low density lipoprotein. Arteriosclerosis 1990;10:1067–1073.PubMedGoogle Scholar
  62. 62.
    Schneider DJ, Sobel BE. Augmentation of synthesis of plasminogen activator inhibitor1 by insulin and insulin-like growth factor type 1: implications for vascular disease in hyperinsulinemic states. Proc Natl Acad Sci USA 1991;88:9959–9963.PubMedGoogle Scholar
  63. 63.
    Fattal PG, Schneider DJ, Sobel BE, Billadello JJ. Post-transcriptional regulation of expression of plasminogen activator inhibitor type 1 mRNA by insulin and insulin-like growth factor. J Biol Chem 1992;267:12412–12415.PubMedGoogle Scholar
  64. 64.
    Schneider DJ, Nordt TK, Sobel BE. Stimulation by proinsulin of expression of plasminogen activator inhibitor type-1 in endothelial cells. Diabetes 1992;41:890–895.PubMedGoogle Scholar
  65. 65.
    Nordt TK, Klassen KJ, Schneider DJ, Sobel BE. Augmentation of synthesis of plasminogen activator Plasminogen Activator Inhibitor Type 1-Part One 189 inhibitor type-1 in arterial endothelial cells by glucose and its implications for local fibrinolysis. Arterioscler Thromb 1993;13:1822–1828.PubMedGoogle Scholar
  66. 66.
    Nordt TK, Schneider DJ, Sobel BE. Augmentation of the synthesis of plasminogen activator inhibitor type-1 by precursors of insulin. A potential risk factor for vascular disease. Circulation 1994;89: 321–330.PubMedGoogle Scholar
  67. 67.
    Alessi MC, Anfosso F, Henry M, Peiretti F, Nalbone G, Juhan-Vague I. Upregulation of PAI-1 synthesis by insulin and proinsulin in HepG2 cells but not in endothelial cells. Fibrinolysis 1995;9: 237–242.Google Scholar
  68. 68.
    Sakata K, Miho N, Shirotani M, Yoshida H, Takada A. Remnant-like particle cholesterol in coronary artery disease: correlation with plasminogen activator inhibitor-1 activity. Fibrinol Proteol 1998;12:123–127.Google Scholar
  69. 69.
    McCormack L, Stickland MH, Grant PJ. Plasminogen activator inhibitor-1 antigen concentration during insulin and oral glucose tolerance tests in obese men. Fibrinolysis 1993;7:225–228.CrossRefGoogle Scholar
  70. 70.
    Seljeflot I, Eritsland J, Torjesen P, Arnesen H. Insulin and PAI-1 levels during oral glucose tolerance test in patients with coronary heart disease. Scand J Clin Lab Invest 1994;54:241–246.PubMedGoogle Scholar
  71. 71.
    Nordt TK, Sawa H, Fujii S, Sobel BS. Induction of plasminogen activator inhibitor type-1 (PAI-1) by proinsulin and insulin in vivo. Circulation 1995;91:764–770.PubMedGoogle Scholar
  72. 72.
    Festa A, D'Agostino R, Mykkänen L, et al. Relative contribution of insulin and its precursors to fibrinogen and PAI-1 in a large population with different states of glucose tolerance. Arterioscler Thromb Biol 1999;19:562–568.Google Scholar
  73. 73.
    Abbasi F, McLaughlin T, Lamendola C, Lipinska I, Tofler G, Reaven GM. Arterioscler Thromb Vasc Biol 1999;19:2818–2821.PubMedGoogle Scholar
  74. 74.
    Sobel BE, Woodcock-Mitchell J, Schneider DJ, Holt RE, Marutsuka K, Gold H. Increased plasminogen activator inhibitor type 1 in coronary artery atherectomy specimens from type 2 diabetic compared with nondiabetic patients. A potential factor predisposing to thrombosis and its persistance. Circulation 1998;97:2213–2221.PubMedGoogle Scholar
  75. 75.
    Jain SK, Nagi DK, Slavin BM, Lumb PJ, Yudkin JS. Insulin therapy in type 2 diabetic subjects suppresses plasminogen activator inhibitor (PAI-1) activity and proinsulin-like molecules independently of glycaemic control. Diabet Med 1993;10:27–32.PubMedGoogle Scholar
  76. 76.
    Grant PJ, Stickland MH, Booth NA, Prentice CRM. Metformin causes a reduction in basal and postvenous occlusion plasminogen activator inhibitor-1 in type 2 diabetic patients. Diabet Med 1991;8:361–365.PubMedGoogle Scholar
  77. 77.
    Landin K, Tengborn L, Smith U. Treating insulin resistance in hypertension with metformin reduces both blood pressure and metabolic risk factors. Journal of Internal Medicine 1991;229:181–187.PubMedGoogle Scholar
  78. 78.
    Jansson JH, Johansson B, Boman K, Nilsson TK. Effects of doxazosin and atenolol on the fibrinolytic system in patients with hypertension and elevated serum cholesterol. European Journal of Clinical Pharmacology 1991;40:321–326.CrossRefPubMedGoogle Scholar
  79. 79.
    Lehtonen A and the Finnish Multicenter Study Group Turku, Finland. Doxazosin effects on insulin and glucose in hypertensive patients. American Heart Journal 1991;121:1307–1311.CrossRefPubMedGoogle Scholar
  80. 80.
    Shieh SM, Sheu WHH, Shen DC, Fuh MMT, Chen YDI, Reaven GM. Glucose, insulin, and lipid metabolism in doxazosin treated patients with hypertension. Am J Hypertens 1992;5:827–831.PubMedGoogle Scholar
  81. 81.
    Giorda C, Appendino M. Effects of doxazosin, a selective alpha-1-inhibitor, on plasma insulin and blood glucose response to a glucose tolerance test in essential hypertension. Metabolism 1993;42:1440–1442.CrossRefPubMedGoogle Scholar
  82. 82.
    Kageyama S, Yamamoto J, Mimura A, et al. Doxazosin improves insulin sensitivity in hypertensive patients. Clin Ther 1993;15:829–837.PubMedGoogle Scholar
  83. 83.
    Zehetgruber M, Christ G, Gabriel H, et al. Effect of antihypertensive treatment with doxazosin on insulin sensitivity and fibrinolytic parameters. Thromb Haemost 1998;79:378–382.PubMedGoogle Scholar
  84. 84.
    Andersen P, Smith P, Seljeflot I, Brataker S, Arnesen H. Effects of gemfibrozil on lipids and haemostasis after myocardial infarction. Thromb Haemost 1990;63:174–177.PubMedGoogle Scholar
  85. 85.
    Fujii S, Sobel BE. Direct effects of gemfibrozil on the fibrinolytic system. Circulation 1992;85:1888–1893.PubMedGoogle Scholar
  86. 86.
    Hamsten A, Syvänne M, Silveira A, et al. Fibrinolytic proteins and progression of coronary artery disease in relation to gemfibrozil therapy. Thromb Haemost 2000;83:397–403.PubMedGoogle Scholar
  87. 87.
    Brown SL, Sobel BE, Fujii S. Attenuation of the synthesis of plasminogen activator inhibitor type 1 by niacin. A potential link between lipid lowering and fibrinolysis. Circulation 1995;92:767–772.PubMedGoogle Scholar
  88. 88.
    Bourcier T, Libby P. HMG CoA reductase inhibitors reduce plasminogen activator inhibitor-1 expression by human vascular smooth muscle and endothelial cells. Arterioscler Thromb Vasc Biol. 2000;20:556–562.PubMedGoogle Scholar
  89. 89.
    Wiesbauer F, Kaun C, Bodlaj G, Maurer G, Huber K, Wojta J. HMG-CoA reductase inhibitors affect the fibrinolytic system of human smooth muscle cells in vitro. J Am Coll Cardiol 2000;35:886–jGoogle Scholar
  90. 90.
    Mussoni L, Banfi C, Sironi L, Arpaia M, Tremoli E. Fluvastatin inhibits basal and stimulated plasminogen activator inhibitor 1, but induces tissue type plasminogen activator in cultured human endothelial cells. Thromb Haemost 2000;84:59–64.PubMedGoogle Scholar
  91. 91.
    Gebara OCE, Mittleman MA, Sutherland P, et al. Association between increased estrogen status and increased fibrinolytic potential in the Framingham offspring study. Circulation 1995;91:1952–1958.PubMedGoogle Scholar
  92. 92.
    Grancha S, Estelleés A, Tormo G, et al. Plasminogen activator inhibitor-1 (PAI-1) promoter 4G/5G genotype and increased PAI-1 circulating levels in postmenopausal women with coronary artery disease. Thromb Haemost 1999;81:516–521.PubMedGoogle Scholar
  93. 93.
    Teede HJ, McGrath BP, Smolich JJ, et al. Arterioscler Thromb Vasc Biol 2000;20:1404–1409.PubMedGoogle Scholar
  94. 94.
    Kilbourne EJ, Scicchitano MS. The activation of plasminogen activator inhibitor-1 expression by IL-1β is attenuated by estrogen in hepatoblastoma hepG2 cells expressing estrogen receptors. Thromb Haemost 1999;81:423–427.PubMedGoogle Scholar
  95. 95.
    Legnani C, Maccaferri M, Tonini P, Cassio A, Cacciari E, Coccheri S. Reduced fibrinolytic response in obese children: association with high baseline activity of the fast acting plasminogen activator inhibitor (PAI-1). Fibrinolysis 1988;2:211–214.CrossRefGoogle Scholar
  96. 96.
    Samad F, Yamamoto K, Loskutoff DJ. Distribution and regulation of plasminogen activator inhibitor-1 in murine adipose tissue in vivo: induction by tumor necrosis factor-alpha and lipopolysaccharide. J Clin Invest 1996;97:37–46.PubMedGoogle Scholar
  97. 97.
    Lundgren CH, Brown SL, Nordt TK, Sobel BE, Fujii S. Elaboration of type-1 plasminogen activator inhibitor from adipocytes: a potential pathogenetic link between obesity and cardiovascular disease. Circulation 1996;93:106–110.PubMedGoogle Scholar
  98. 98.
    Shimomura I, Funahashi T, Takahashi M, et al. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nat Med 1996;2:800–803.CrossRefPubMedGoogle Scholar
  99. 99.
    Morange PE, Alessi MC, Verdier M, Casanova D, Magalon G, Juhan-Vague I. PAI-1 produced ex vivo by human adipose tissue is relevant to PAI-1 blood level. Thromb Vasc Biol 1999;19:1361–1365.Google Scholar
  100. 100.
    Eriksson P, Van Harmelen V, Hoffstedt J, et al. Regional variation in plasminogen activator inhibitor-1 expression in adipose tissue from obese individuals. Thromb Haemost 2000;83:545–548.PubMedGoogle Scholar
  101. 101.
    Van Harmelen V, Wahrenberg H, Eriksson P, Arner P. Role of gender and genetic variance in plasminogen activator inhibitor-1 secretion from human adipose tissue. Thromb Haemost 2000;83:304–308.PubMedGoogle Scholar
  102. 102.
    Folsom AR, Quamhieh HT, Wing RR, et al. Impact of weight lost on plasminogen activator inhibitor (PAI-1), factor VII, and other hemostatic factors in moderately overweight adults. Arterioscler Thromb 1993;13:162–169.PubMedGoogle Scholar
  103. 103.
    Calles-Escandon J, Ballor D, Harvey-Berino J, Ades P, Tracy R, Sobel B. Amelioration of the inhibition of fibrinolysis in the elderly, obese subjects by moderate energy intake restriction. Am J Clin Nutr 1996;64:7–11.PubMedGoogle Scholar
  104. 104.
    Juhan-Vague I, Alessi MC. PAI-1, obesity, insulin resistance and risk of cardiovascular events. Thromb Haemost 1997;78:656–660.PubMedGoogle Scholar
  105. 105.
    Kockx M, Leenen R, Seidell J, Princen HMG, Kooistra T. Relationship between visceral fat and PAI-1 in overweight men and women before and after weight loss. Thromb Haemost 1999;82:1490–1496.PubMedGoogle Scholar
  106. 106.
    Ridker PM, Gaboury CL, Conlin PR, Seely EW, Williams GH, Vaughan DE. Stimulation of plasminogen activator inhibitor in vivo by infusion of angiotensin II-evidence of a potential interaction between the renin-angiotensin system and fibrinolytic function. Circulation 1993;87:1969–1973.PubMedGoogle Scholar
  107. 107.
    Van Leeuven RTJ, Kol A, Andreotti F, Kluft C, Maseri A, Sperti G. Angiotensin II increases plasminogen activator inhibitor type I and tissue-type plasminogen activator messenger RNA in cultured rat aortic smooth muscle cells. Circulation 1994;90: 362–368.PubMedGoogle Scholar
  108. 108.
    Vaughan DE, Lazos SA, Tong K. Angiotensin II regulates the expression of plasminogen activator inhibitor in cultured endothelial cells. J Clin Invest 1995;95:995–1001.PubMedGoogle Scholar
  109. 109.
    Brown NJ, Nadeau J, Vaughan DE. Stimulation of tissue-type plasminogen activator in vivo by infusion of bradykinin. Thromb Haemost 1997;77:522–525.PubMedGoogle Scholar
  110. 110.
    Feener EP, Northrup JM, Aiello LP, King GL. Angiotensin II induces plasminogen activator inhibitor-1 and-2 expression in vascular endothelial and smooth muscle cells. J Clin Invest 1995;95:1353–1362.PubMedGoogle Scholar
  111. 111.
    Nishimura H, Tsuji H, Masuda H, et al. The effects of angiotensin metabolities on the regulation of coagulation and fibrinolysis in cultured rat aortic endothelial cells. Thromb Haemost. 1999;82:1516–1521.PubMedGoogle Scholar
  112. 112.
    Kerins DM, Hao Q, Vaughan DE. Angiotensin induction of PAI-1 expression in endothelial cells is mediated by the hexapeptide angiotensin IV. J Clin Invest 1995;96:2515–2520.PubMedGoogle Scholar
  113. 113.
    Chen H, Bouchie JL, Perez AS, et al. Role of the angiotensin AT receptor in rat aortic and cardiac PAI-1 gene expression. Arterioscler Thromb Vasc Biol 2000;20:2297–2302.PubMedGoogle Scholar
  114. 114.
    Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Sourbrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounts for half of the variance of serum enzyme levels. J Clin Invest 1990;86:1343–1346.PubMedGoogle Scholar
  115. 115.
    Coxterousse O, Allegrini J, Lopez M, Alheno-Gelas F. Angiotensin I-converting enzyme in the human circulating mononuclear cells: genetic polymorphism of expression in T lymphocytes. Biochem J 1993;290:33–40.PubMedGoogle Scholar
  116. 116.
    Cambien F, Poirier O, Lecerp L, et al. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 1992;359:641–644.CrossRefPubMedGoogle Scholar
  117. 117.
    Tiret L, Kee F, Poirier O, et al. Deletion polymorphism in angiotensin-converting enzyme gene associated with parental history of myocardial infarction. Lancet 1993;341:991–992.CrossRefPubMedGoogle Scholar
  118. 118.
    Margaglione M, Grandone E, Vecchione G, et al. Plasminogen activator inhibitor 1 (PAI-1) antigen plasma levels in subjects attending a metabolic ward — relation to polymorphisms of PAI-1 and angiotensin converting enzyme (ACE) genes. Arterioscler Thromb Vasc Biol 1997;17:2082–2087.PubMedGoogle Scholar
  119. 119.
    Jansson JH, Boman K, Nielsson TK. Enalapril related changes in the fibrinolytic system in survivors of myocardial infarction. Eur J Clin Pharmacol 1993;44:485–488.CrossRefPubMedGoogle Scholar
  120. 120.
    Wright RA, Flapan AD, Alberti KGMM, Ludlam CA, Fox KAA. Effects of captopril therapy on endogenous fibrinolysis in men with recent, uncomplicated myocardial infarction. J Am Coll Cardiol 1994;24: 67–73.PubMedGoogle Scholar
  121. 121.
    Vaughan DE, Rouleau J, Ridker PM, Arnold JMO, Menapace FJ, Pfeffer MA. On behalf of the HEART Study Investigators: Effects of ramipril on plasma fibrinolytic balance in patients with acute anterior myocardial infarction. Circulation 1997;96: 442–447.PubMedGoogle Scholar
  122. 122.
    Soejima H, Ogawa H, Yasue H, Suefuji H, Kaikita K, Nishiyama K. Effects of imidapril therapy on endogenous fibrinolysis in patients with recent myocardial infarction. Clin Cardiol 1997;20:441–445.PubMedGoogle Scholar
  123. 123.
    Brown NJ, Agirbasli MA, Williams GH, Litchfield WR, Vaughan DE. Effect of activation and inhibition Plasminogen Activator Inhibitor Type 1-Part One 191 of the renin-angiotensin system on plasma PAI-1. Hypertension 1998;32:965–971.PubMedGoogle Scholar
  124. 124.
    Goodfield NE, Newby DE, Ludlam CA, Flapan AD. Effects of acute angiotensin II type 1 receptor antagonism and angiotensin converting enzyme inhibition on plasma fibrinolytic parameters in patients with heart failure. Circulation 1999;99:2983–2985.PubMedGoogle Scholar
  125. 125.
    Erdem Y, Usalan C, Haznedaroglu IC, et al. Effects of angiotensin converting enzyme and angiotensin II receptor inhibition on impaired fibrinolysis in systemic hypertension. Am J Hypertens 1999;12: 1071–1076.CrossRefPubMedGoogle Scholar
  126. 126.
    Sakata K, Shirotani M, Yoshida H, Urano T, Takada Y, Takada A. Differential effects of enalapril and nitrendipine on the fibrinolytic system in essential hypertension. Am Heart J 1999;137:1094–1099.PubMedGoogle Scholar
  127. 127.
    Zehetgruber M, Beckmann R, Gabriel H, Christ G, Binder BR, Huber K. Comparative cross-over study of the effects of lisinopril and doxazosin on insulin, glucose and lipoprotein metabolism and the endogenous fibrinolytic system. Fibrinolysis 1997;11: 153–158.Google Scholar
  128. 128.
    Sayer JW, Gutteridge C, Syndercombe-Court D, Wilkinson P, Timmis AD. Circadian activity of the endogenous fibrinolytic system in stable coronary artery disease: effects of beta-adrenoreceptor blockers and angiotensin-converting enzyme inhibitors. J Am Coll Cardiol 1998;32:1962–1968.CrossRefPubMedGoogle Scholar
  129. 129.
    Hamdan AD, Quist WC, Gagne JB, Feener EP. Angiotensin-converting enzyme inhibition suppress plasminogen activator inhibitor-1 expression in the neointima of balloon-injured rat aorta. Circulation 1996;93:1073–1078.PubMedGoogle Scholar
  130. 130.
    Hirschl MM, Wagner A, Gwechenberger M, et al. Attenuation of thrombolysis-induced increase of plasminogen activator inhibitor-1 by intravenous enalaprilat. Thromb Haemost 1998;79:140–143.PubMedGoogle Scholar
  131. 131.
    Eliasson B, Attvall S, Taskinen MR, Smith U. The insulin resistance syndrome in smokers is related to smoking habits. Arterioscler Thromb 1994;14:1946–1950.PubMedGoogle Scholar
  132. 132.
    Mehrabian M, Peter JB, Barnard RJ, Lusis AJ. Dietary regulation of fibrinolytic factors. Atherosclerosis 1990;84:25–32.PubMedGoogle Scholar
  133. 133.
    De Geus EJC, Kluft C, de Bart ACW, van Doornen LJP. Effects of exercise training on plasminogen activator inhibitor activity. Med Sci Sports Exercise 1992;24:1210–1219.Google Scholar
  134. 134.
    El-Sayed MS. Fibrinolytic and hemostatic parameter response after resistance exercise. Med Sci Sports Exercise 1993;25:597–602.Google Scholar
  135. 135.
    Wiman B, Ljundberg B, Chmielewska J, Urden G, Blombäck M, Johnsson H. The role of the fibrinolytic system in deep venous thrombosis. J Lab Clin Med 1985;105:265–270.PubMedGoogle Scholar
  136. 136.
    Grimaudo V, Bachmann F, Hauert J, Christe MA, Kruithof EKO. Hypofibrinolysis in patients with a history of idiopathic deep vein thrombosis and/or pulmonary embolism. Thromb Haemost 1992;67:397–410.PubMedGoogle Scholar
  137. 137.
    Samama M. Hypofibrinolysis and venous thrombosis. In: Neri Serneri GG, Gensini GF, Abbate R, Prisco D, eds. Thrombosis: an update. Florence: Scientific Press, 1992:165–181.Google Scholar
  138. 138.
    Tabernero MD, Estellés A, Vicente V, Alberca J, Aznar J. Incidence of increased plasminogen activator inhibitor in patients with deep venous thrombosis and/or pulmonary embolism. Thromb Res 1989;56:565–570.CrossRefPubMedGoogle Scholar
  139. 139.
    Paramo JA, Alfaro MJ, Roche E. Postoperative changes in the plasmatic level of tissue-type plasminogen activator and its fast-acting inhibitor: relationship to deep vein thrombosis and influence of prophylaxis. Thromb Haemost 1985;54:713–716.PubMedGoogle Scholar
  140. 140.
    Juhan-Vague I, JV, Alessi MC, et al. Deficient t-PA release and elevated PA inhibitor levels in patients with spontaneous or recurrent deep venous thrombosis. Thromb Haemost 1987;57: 67–72.PubMedGoogle Scholar
  141. 141.
    Erickson LA, Fici GJ, Lund JE, Boyle TP, Polites G, Marotti KR. Development of venous occlusions in mice transgenic for the plasminogen activator inhibitor-1 gene. Nature 1990;346:74–76.CrossRefPubMedGoogle Scholar
  142. 142.
    Huber K, Beckmann R, Frank H, Kneussl M, Mlczoch J, Binder BR. Fibrinogen, t-PA, and PAI-1 plasma levels in patients with primary pulmonary hypertension. Am J Crit Care Med 1994;150:929–933.Google Scholar
  143. 143.
    Moser KM, Auger WR, Fedullo PF, Jamieson SW. Chronic thromboembolic pulmonary hypertension. Eur Resp J 1992;5:334–342.Google Scholar
  144. 144.
    Olman MA, Marsh JJ, Lang IM, Moser KM, Binder BR, Schleef RR. Endogenous fibrinolytic system in chronic large-vessel thromboembolic pulmonary hypertension. Circulation 1992;86:1241–1248.PubMedGoogle Scholar
  145. 145.
    Lang IM, Marsh JJ, Olman MA, Moser KM, Loskutoff DJ, Schleef RR. Mechanisms contributing to the stabilization of chronic pulmonary thromboemboli: prevalence of type 1 plasminogen activator inhibitor (PAI-1) expression in the pulmonary vasculature. Circulation 1993:submitted.Google Scholar
  146. 146.
    Lang IM, Mardh JJ, Olman MA, Moser KM, Loskutoff DJ, Schleef RR. Expression of type 1 plasminogen activator inhibitor in chronic pulmonary thromboemboli. Circulation 1994;89:2715–2721.PubMedGoogle Scholar
  147. 147.
    Lang IM, Moser KM, Schleef RR. Elevated expression of urokinase-like plasminogen activator and plasminogen activator inhibitor type 1 during the vascular remodeling associated with pulmonary thromboembolism. Arterioscler Thromb Vasc Biol 1998;18:808–815.PubMedGoogle Scholar
  148. 148.
    Fearns C, Samad F, Loskutoff DJ. Synthesis and localization of PAI-1 in the vessel wall. In: van Hinsbergh VWM, ed. Vascular Control of Hemostasis. Amsterdam: Harwood Academic Publishers, 1995:207–226.Google Scholar
  149. 149.
    Fujii S, Hopkins WE, Sobel BE. Mechanisms contributing to increased synthesis of plasminogen activator inhibitor type 1 in endothelial cells by constituents of platelets and their implications for thrombosis. Circulation 1991;83:645–651.PubMedGoogle Scholar
  150. 150.
    Slivka SR, Loskutoff DJ. Platelets stimulate endothelial cells to synthesize type-1 plasminogen activator inhibitor. Blood 1991;77:1013–1019.PubMedGoogle Scholar
  151. 151.
    Hamsten A, Wiman B, De Faire U, Blombäck M. Increased levels of a rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction. N Engl J Med 1985;313:1557–1563.PubMedGoogle Scholar
  152. 152.
    Paramo JA, Colucci M, Collen D. Plasminogen activator inhibitor in blood of patients with coronary artery disease. Brit Med J 1985;291:573–574.Google Scholar
  153. 153.
    Almér LO, Ohlin H. Elevated levels of the rapid inhibitor of plasminogen activator (t-PAI) in acute myocardial infarction. Thromb Res 1987;47:335–339.CrossRefPubMedGoogle Scholar
  154. 154.
    Olofsson BO, Dahlen G, Nilsson TK. Evidence for increased levels of plasminogen activator inhibitor and tissue plasminogen activator in plasma of patients with angiographically verified coronary artery disease. Euro Heart J 1989;10:77–82.Google Scholar
  155. 155.
    Huber K, Resch I, Stefenelli T, et al. Plasminogen activator inhibitor-1 levels in patients with chronic angina pectoris with or without angiographic evidence of coronary sclerosis. Thromb Haemost 1990;63:336–339.PubMedGoogle Scholar
  156. 156.
    Juhan-Vague I, Alessi MC. Plasminogen activator inhibitor-1 and atherothrombosis. Thromb Haemost 1993;70:138–143.PubMedGoogle Scholar
  157. 157.
    Rocha E, Paramo JA. The relationship between impaired fibrinolysis and coronary heart disease. Fibrinolysis 1994;8:294–303.CrossRefGoogle Scholar
  158. 158.
    Salomaa V, Stinson V, Kark JD, Folsom AR, Davis CE, Wu KK. Association of fibrinolytic parameters with early atherosclerosis. The ARIC study. Circulation 1995;91:284–290.PubMedGoogle Scholar
  159. 159.
    Geppert A, Beckmann R, Graf S, et al. Tissue-type plasminogen activator and type-1 plasminogen activator inhibitor in patients with coronary artery disease: relations to clinical variables and cardiovascular risk factors. Fibrinolysis 1995;9:109–113.Google Scholar
  160. 160.
    Pedersen OD, Gram J, Jespersen J. Plasminogen activator inhibitor type-1 determines plasmin formation in patients with ischemic heart disease. Thromb Haemost 1995;73:835–840.PubMedGoogle Scholar
  161. 161.
    Juhan-Vague I, Pyke SD, Alessi MC, Jespersen J, Haverkate F, Thompson SG. Fibrinolytic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. ECAT Study Group. European Concerted Action on Thrombosis and Disabilities. Circulation 1996;94:2057–2063.PubMedGoogle Scholar
  162. 162.
    Thögersen AM, Jansson J, Boman K, et al. High plasminogen activator inhibitor and tissue plasminogen activator levels in plasma precede a first acute myocardial infarction in both men and women. Circulation 1998;98:2241–2247.PubMedGoogle Scholar
  163. 163.
    Hamsten A, DeFaire U, Walldius G, et al. Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet 1987;2:3–9.CrossRefPubMedGoogle Scholar
  164. 164.
    Muller JE, Stone PH, Turi ZG, et al. Circadian variation in the frequency of onset of acute myocardial infarction. N Engl J Med 1985;313:1315–1322.PubMedGoogle Scholar
  165. 165.
    Huber K, Resch I, Rosc D, Schuster E, Glogar D, Binder BR. Circadian variation of plasminogen activator inhibitor and tissue plasminogen activator levels in plasma of patients with unstable coronary artery disease and acute myocardial infarction. Thromb Haemost 1988;60:372–376.PubMedGoogle Scholar
  166. 166.
    Angleton P, Chandler WL, Schmer G. Diurnal variation of tissue-type plasminogen activator and its rapid inhibitor (PAI-1). Circulation 1989;79:101–106.PubMedGoogle Scholar
  167. 167.
    Doggen CJM, Bertina RM, Manger Cats V, Reitsma PH, Rosendaal FR. The 4G/5G polymorphism in the plasminogen activator inhibitor-1 gene is not associated with myocardial infarction. Thromb Haemost 1999;82:115–120.PubMedGoogle Scholar
  168. 168.
    Gardemann A, Lohre J, Katz N, Tillmanns H, Hehrlein FW, Haberbosch W. The 4G/4G genotype of the plasminogen activator inhibitor 4G/5G gene polymorphism is associated with coronary atherosclerosis in patients at high risk for this disease. Thromb Haemost 1999;82:1121–1126.PubMedGoogle Scholar
  169. 169.
    Anvari A, Türel Z, Schuster E, Sarantopoulos O, Gottsauner-Wolf M, Huber K. PAI-1 gene polymorphism in patients with coronary artery disease and malignant ventricular arrhythmias. PACE 1999;22(abstract).Google Scholar
  170. 170.
    Mikkelsson J, Perola M, Wartiovaara U, et al. Plasminogen activator inhibitor-1 (PAI-1) 4G/5G polymorphism, coronary thrombosis, and myocardial infarction in middle-aged Finnish men who died suddenly. Thromb Haemost 2000;84:78–82.PubMedGoogle Scholar
  171. 171.
    Huber K. Plasminogen activator inhibitor type-1 (part two): Role for failure of thrombolytic therapy. PAI-1 resistance as a potential benefit for new fibrinolytic agents. J Thromb Thrombolysis 2001;j.Google Scholar
  172. 172.
    Huber K, Jörg M, Probst P, et al. A decrease in plasminogen activator inhibitor-1 activity after successful percutaneous transluminal coronary angioplasty is associated with a significantly reduced risk for coronary restenosis. Thromb Haemost 1992;67:209–213.PubMedGoogle Scholar
  173. 173.
    Sawa H, Lundgren C, Sobel BE, Fujii S. Increased intramural expression of plasminogen activator inhibitor type 1 after balloon injury: a potential progenitor of restenosis. J Am Coll Cardiol 1994;24:1742–1748.PubMedGoogle Scholar
  174. 174.
    Gottsauner-Wolf M, Sochor H, Jörg M, et al. Predictive value of PAI-1 plasma activity and thallium perfusion imaging for restenosis after percutaneous transluminal angioplasty in clinically asymptomatic patients. Thromb Haemost 1999;81:522–526.PubMedGoogle Scholar
  175. 175.
    Baumgartner C, Huber K, Holzner F, Zeiler K, Auff E, Binder BR. Untersuchung zur Frage von persistierenden Veränderungen der Fibrinolyseparameter t-PA und PAI bei Patienten nach juvenilem ischä-mischem cerebralem Insult. Klinische Wochenschrift 1988;66:1110–1115.PubMedGoogle Scholar
  176. 176.
    Lindgren A, Lindoff C, Norrving B, Astedt B, Johansson BB. Tissue plasminogen activator and plasminogen activator inhibitor 1 in stroke patients. Stroke 1996;27:1066–1071.PubMedGoogle Scholar
  177. 177.
    Margaglione M, DiMinno G, Grandone E, et al. Plasma lipoprotein(a) levels in subjects attending a metabolic ward. Discrimination between individuals with and without a history of ischemic stroke. Arterioscler Thromb Vasc Biol 1996;16:120–128.PubMedGoogle Scholar
  178. 178.
    Smith FB, Lee AJ, Rumley A, Fowkes FGR, Lowe GDO. Tissue-plasminogen activator, plasminogen activator inhibitor and risk of peripheral arterial disease. Atherosclerosis 1995;115:35–43.CrossRefPubMedGoogle Scholar
  179. 179.
    Caputo M, Mantini G, Floriani I, Ciceri M, Noseda A, Bonomo L. Tissue plasminogen activator, tissue plasminogen activator inhibitor and lipoprotein(a) in patients with coronary, epiaortic and peripheral occlusive artery disease. Eur Heart J 1996;17:1329–1336.PubMedGoogle Scholar
  180. 180.
    Van der Bom JG, Bots ML, Haverkate F, et al. Fibrinolytic activity in peripheral atherosclerosis in the elderly. Thromb Haemost 1999;81:275–280.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Kurt Huber
    • 1
  1. 1.Department of CardiologyUniversity of Vienna, General HospitalViennaAustria

Personalised recommendations