Studia Logica

, Volume 68, Issue 1, pp 103–128 | Cite as

Truth in Applicative Theories

  • Reinhard Kahle


We give a survey on truth theories for applicative theories. It comprises Frege structures, universes for Frege structures, and a theory of supervaluation. We present the proof-theoretic results for these theories and show their syntactical expressive power. In particular, we present as a novelty a syntactical interpretation of ID1 in a applicative truth theory based on supervaluation.

truth theories applicative theories Frege structures universes supervaluation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Acz77]
    P. Aczel, 'The strength of Martin Lóf's intuitionistic type theory with one universe', in S. Miettinen and J. Väänäanen, editors, Proceedings of the Symposiums on Mathematical Logic in Oulo 1974 and in Helsinki 1975, Report No. 2 from the Dept. of Philosophy, University of Helsinki, 1977.Google Scholar
  2. [Acz80]
    P. Aczel, 'Frege structures and the notion of proposition, truth and set', in J. Barwise, H. Keisler, and K. Kunen, editors, The Kleene Symposium, pages 31-59, North-Holland, 1980.Google Scholar
  3. [Bee85]
    M. Beeson, Foundations of Constructive Mathematics, Ergebnisse der Mathematik und ihrer Grenzgebiete; 3. Folge, Bd. 6, Springer, Berlin, 1985.Google Scholar
  4. [BFPS81]
    W. Buchholz, S. Feferman, W. Pohlers, and W. Sieg, Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical studies, volume 897 of Lecture Notes in Mathematics, Springer, 1981.Google Scholar
  5. [Can89]
    A. Cantini, 'Notes on formal theories of truth', Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 35:97-130, 1989.Google Scholar
  6. [Can90]
    A. Cantini, 'A theory of formal truth arithmetically equivalent to ID1', Journal of Symbolic Logic 55(1):244-259, 1990.Google Scholar
  7. [Can91]
    A. Cantini, 'A logic of abstraction related to finite constructive number classes', Archive for Mathematical Logic, 31:69-83, 1991.Google Scholar
  8. [Can93]
    A. Cantini, 'Extending the first-order theory of combinators with selfreferential truth', Journal of Symbolic Logic 58(2), 1993.Google Scholar
  9. [Can95]
    A. Cantini, 'Levels of truth', Notre Dame Journal of Formal Logic, 36:185-213, 1995.Google Scholar
  10. [Can96]
    A. Cantini, Logical Frameworks for Truth and Abstraction, volume 135 of Studies in Logic and the Foundations of Mathematics, North-Holland, 1996.Google Scholar
  11. [Fef75]
    S. Feferman, 'A language and axioms for explicit mathematics', in J. Crossley, editor, Algebra and Logic, volume 450 of Lecture Notes in Mathematics, pages 87-139, Springer, 1975.Google Scholar
  12. [Fef79]
    S. Feferman, 'Constructive theories of functions and classes', in M. Boffa, D. van Dalen, and K. McAloon, editors, Logic Colloquium 78, pages 159-224, North-Holland, Amsterdam, 1979.Google Scholar
  13. [Fef82]
    S. Feferman, 'Iterated inductive fixed-point theories: Application to Hancock's conjecture', in G. Metakides, editor, Patras Logic Symposion, pages 171-196, North-Holland, Amsterdam, 1982.Google Scholar
  14. [Fef88]
    S. Feferman, 'Hilbert's program relativized: Proof-theoretical and foundational reductions', Journal of Symbolic Logic 53(2):364-384, 1988.Google Scholar
  15. [Fef91]
    S. Feferman, 'Reflection on imcompleteness', Journal of Symbolic Logic 57(1):1-49, 1991.Google Scholar
  16. [Fef00]
    S. Feferman, 'Does reductive proof theory have a viable rationale?', Erkenntnis 53(1-2):63-96, 2000.Google Scholar
  17. [FJ93]
    S. Feferman, and G. Jäger, 'Systems of explicit mathematics with nonconstructive µ-operator. Part I', Annals of Pure and Applied Logic 65(3):243-263, December 1993.Google Scholar
  18. [FJ96]
    S. Feferman, and G. Jäger, 'Systems of explicit mathematics with nonconstructive µ-operator. Part II,' Annals of Pure and Applied Logic 79:37-52, 1996.Google Scholar
  19. [FM87a]
    R. Flagg and J. Myhill, 'An extension of Frege structures', in D. Kueker, E. Lopez-Escobar, and C. Smith, editors, Mathematical Logic and Theoretical Computer Science, pages 197-217, Dekker, 1987.Google Scholar
  20. [FM87b]
    R. Flagg and J. Myhill, 'Implication and analysis in classical Frege structures', Annals of Pure and Applied Logic 34:33-85, 1987.Google Scholar
  21. [FS82]
    H. Friedman and M. Sheard, 'An axiomatic approach to self-referential truth', Annals of Pure and Applied Logic 33:1-21, 1982.Google Scholar
  22. [Hal96]
    V. Halbach, Axiomatische Wahrheitstheorien, Akademie-Verlag, Berlin, 1996.Google Scholar
  23. [Ham99]
    F. Hamm, Modelltheoretische Untersuchungen zur Semantik von Nominalisierungen, Habilitionsschrift, Seminar für Sprachwissenschaften, Universität Tübingen, 1999.Google Scholar
  24. [HK95]
    S. Hayashi and S. Kobayashi, 'A new formulation of Feferman's system of functions and classes and its relation to Frege structures', International Journal of Foundations of Computer Science 6(3):187-202, 1995.Google Scholar
  25. [Jäg82]
    G. Jãger, 'Zur Beweistheorie der Kripke-Platek-Mengenlehre über den natürlichen Zahlen', Archiv für mathematische Logik und Grundlagenforschung 22:121-139, 1982.Google Scholar
  26. [JKS99]
    G. Jäger, R. Kahle, and TH. Strahm, 'On applicative theories', in A. Cantini, E. Casari, and P. Minari, editors, Logic and Foundation of Mathematics, pages 88-92, Kluwer, 1999.Google Scholar
  27. [JKS01]
    G. Jäger, R. Kahle, and TH. Studer,'Universes in explicit mathematics', Annals of Pure and Applied Logic 109(3):141-162, 2001.Google Scholar
  28. [JKSS99]
    G. Jäger, R. Kahle, A. Setzer, and TH. Strahm, 'The proof-theoretic analysis of transfinitely iterated fixed point theories', Journal of Symbolic Logic 64(1):53-67, March 1999.Google Scholar
  29. [JS95]
    G. Jäger and TH. Strahm, 'Totality in applicative theories', Annals of Pure and Applied Logic 74:105-120, 1995.Google Scholar
  30. [JS96]
    G. Jäger and TH. Strahm, 'Some theories with positive induction of ordinal strength ϕω0', Journal of Symbolic Logic, 61(3):818-842, September 1996.Google Scholar
  31. [Kah97a]
    R. Kahle, Applikative Theorien und Frege-Strukturen, PhD thesis, Institut für Informatik und angewandte Mathematik, Universität Bern, 1997.Google Scholar
  32. [Kah97b]
    R. Kahle, 'Uniform limit in explicit mathematics with universes', Technical Report IAM-97-002, IAM, Universität Bern, März 1997.Google Scholar
  33. [Kah99]
    R. Kahle, 'Frege structures for partial applicative theories', Journal of Logic and Computation 9(5):683-700, October 1999.Google Scholar
  34. [Kah0xa]
    R. Kahle, 'Mathematical proof theory in the light of ordinal analysis', Synthese, 200x, (to appear).Google Scholar
  35. [Kah0xb]
    R. Kahle, 'Universes over Frege structures', 200x (submitted).Google Scholar
  36. [KS00]
    R. Kahle and TH. Studer, 'A theory of explicit mathematics equivalent with ID1', in P. Clote and H. Schwichtenberg, editors, CSL 2000, volume 1862 of LNCS, pages 356-370, Springer, 2000.Google Scholar
  37. [KS0x]
    R. Kahle and TH. Studer, 'Formalizing non-termination of recursive programs', Journal of Logic and Algebraic Programming, 200x (to appear).Google Scholar
  38. [Kri75]
    S. Kripke, 'Outline of a theory of truth', Journal of Philosophy 72:690-716, 1975.Google Scholar
  39. [Mar84]
    P. Martin-lóf, Intuitionistic Type Theory, Bibliopolis, 1984.Google Scholar
  40. [Mar93]
    M. Marzetta, 'Universes in the theory of types and names', in E. Bórger et al., editor, Computer Science Logic '92, volume 702 of Lecture Notes in Computer Science, pages 340-351, Springer, 1993.Google Scholar
  41. [Mar94]
    M. Marzetta, Predicative Theories of Types and Names, PhD thesis, Universität Bern, Institut f¨ur Informatik und angewandte Mathematik, 1994.Google Scholar
  42. [Poh98]
    W. Pohlers, 'Subsystems of set theory and second order number theory', in S. Buss, editor, Handbook of Proof Theory, chapter IV, pages 209-335, North-Holland, 1998.Google Scholar
  43. [Sch77]
    K. Schütte, Proof Theory, volume 225 of Grundlehren der mathematischen Wissenschaften, Springer, Berlin, 1977.Google Scholar
  44. [Sco75]
    D. Scott, 'Combinators and classes', in C. Bóhm, editor, λ-Calculus and Computer Science Theory, volume 37 of Lecture Notes in Computer Science, pages 1-26, Springer, 1975.Google Scholar
  45. [Smi78]
    J. Smith, On the relation between a type theoretic and a logical formulation of the theory of constructions, PhD thesis, Dept. of Mathematics, University of Góteborg, 1978.Google Scholar
  46. [Smi84]
    J. Smith, 'An interpretation of Martin-Lóf's type theory in a type-free theory of proposition', Journal of Symbolic Logic 49(3):730-753, 1984.Google Scholar
  47. [Str96]
    TH. Strahm, On the proof theory of applicative theories, PhD thesis, Universität Bern, Institut für Informatik und angewandte Mathematik, 1996.Google Scholar
  48. [Str99]
    TH. Strahm, 'First steps into metapredicativity in explicit mathematics', in S. Cooper and J. Truss, editors, Sets and Proofs, volume 258 of London Mathematical Society Lecture Note Series, pages 383-402, Cambridge University Press, 1999.Google Scholar
  49. [Tar35]
    A. Tarski, 'Der Wahrheitsbegriff in den formalisierten Sprachen', Studia Philosophica 1:261-405, 1935. Reprinted in: A. Tarski, Collected Papers, Volume 2, pp. 51-198, Birkhäuser, Basel, 1986. Original version of [Tar56].Google Scholar
  50. [Tar56]
    A. Tarski, 'The concept of truth in formalized languages', in Logic, Semantics, Metamathematics, pages 152-278, Clarendon Press, Oxford, 1956. Revised and supplemented English translation of [Tar35].Google Scholar
  51. [vF68]
    B. van Fraassen, 'Presupposition, implication and self-reference', Journal of Philosophy 65:135-152, 1968.Google Scholar
  52. [vF70]
    B. van Fraassen, 'Inference and self-reference', Synthese, 21:425-438, 1970.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Reinhard Kahle
    • 1
  1. 1.WSIUniversität TübingenTübingenGermany

Personalised recommendations