Studia Logica

, Volume 68, Issue 1, pp 69–87 | Cite as

Theories of Truth Which Have No Standard Models

  • Hannes Leitgeb


This papers deals with the class of axiomatic theories of truth for semantically closed languages, where the theories do not allow for standard models; i.e., those theories cannot be interpreted as referring to the natural number codes of sentences only (for an overview of axiomatic theories of truth in general, see Halbach[6]). We are going to give new proofs for two well-known results in this area, and we also prove a new theorem on the nonstandardness of a certain theory of truth. The results indicate that the proof strategies for all the theorems on the nonstandardness of such theories are "essentially" of the same kind of structure.

axiomatic theories of truth semantically closed languages nonstandard models omega-logic McGee's omega-inconsistency result 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Chang, C.C., H.J. Keisler, Model Theory, Amsterdam, North-Holland, 1990.Google Scholar
  2. [2]
    Friedman, H., M., Sheard, 'An axiomatic approach to self-referential truth', Annals of Pure and Applied Logic 33 (1987): 1-21.Google Scholar
  3. [3]
    GÖdel, K., “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I', Monatshefte für Mathematik und Physik 38 (1931): 173-198.Google Scholar
  4. [4]
    Gupta, A., N. Belnap, The Revision Theory of Truth (Cambridge, Massachusetts: The MIT Press, 1993).Google Scholar
  5. [5]
    Halbach, V., 'A system of complete and consistent truth', Notre Dame Journal of Formal Logic 35/3 (1994): 311-327.Google Scholar
  6. [6]
    Halbach, V., Axiomatische Wahrheitstheorien, Berlin, Akademie Verlag, 1996.Google Scholar
  7. [7]
    Hardy, J., 'Is Yablo's paradox Liar-like?', Analysis 55.3 (1995), 197-198.Google Scholar
  8. [8]
    Henkin, L., 'A generalization of the concept of w-Consistency', Journal of Symbolic Logic 19 (1954), 183-196.Google Scholar
  9. [9]
    Leitgeb, H., 'Truth as translation', Forschungsbericht der DFG-Forschergruppe Logik in der Philosophie 44 (1999); submitted for publication.Google Scholar
  10. [10]
    McCarthy, T., 'Ungroundedness in classical languages', Journal of Philosophical Logic 17 (1988): 61-74.Google Scholar
  11. [11]
    McGee, V., 'How truthlike can a predicate be? A negative result', Journal of Philosophical Logic 14 (1985): 399-410.Google Scholar
  12. [12]
    Montague, R., 'Syntactic treatments of modality, with corollaries on reflexion principles and finite axiomatizability', Acta Philosophica Fennica 16 (1974), 153-167.Google Scholar
  13. [13]
    Orey, S., 'On w-consistency and related properties', Journal of Symbolic Logic 21 (1956): 246-252.Google Scholar
  14. [14]
    Tarski, A., 'Der Wahrheitsbegriff in den formalisierten Sprachen', Studia Philosophica 1 (1935): 261-405.Google Scholar
  15. [15]
    Tarski, A., Mostowski, A., Robinson, R.M., Undecidable Theories (Amsterdam: North Holland, 1953).Google Scholar
  16. [16]
    Visser, A., 'Semantics and the Liar Paradox', Handbook of Philosophical Logic, Vol. IV (1989): 617-706.Google Scholar
  17. [17]
    Yablo, S., 'Paradox without self-reference', Analysis 53 (1993): 251-252.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Hannes Leitgeb
    • 1
  1. 1.Department of PhilosophyUniversity of SalzburgAustria

Personalised recommendations