Plant and Soil

, Volume 235, Issue 2, pp 181–192 | Cite as

Plant cells express several stress calcium ATPases but apparently no sodium ATPase

  • B. Garciadeblas
  • B. Benito
  • A. Rodríguez-Navarro
Article

Abstract

The existence of plant Na+-ATPases has been investigated in barley (Hordeum vulgare) and in the seagrass Cymodocea nodosa, by a combination of RT–PCR and flux approaches. Systematic RT–PCR amplifications were carried out in mRNA preparations of barley roots exposed to Na+ or of Cymodocea leaves, using degenerate primers that can amplify all known plant and fungal Na+- and Ca2+-ATPases and animal Na+,K+-ATPases. This allowed the amplification of fourteen different cDNAs that could encode P-type ATPases. A phylogenetic analysis showed that none of these ATPases belongs to the ENA type, in which all fungal Na+-ATPases cluster, or to the animal Na+,K+-ATPase type, and that all cluster with known plant and fungal Ca2+-ATPases. Expression analysis of the barley transcripts indicates that the expressions of all but one of the ATPases are enhanced at high Ca2+, high pH, or high Na+, and that three ATPases are only expressed under stress conditions. Genes encoding ENA- or Na+,K+-ATPases were not found in the complete genomes of Arabidopsis thaliana and rice (Oryza sativa). On the basis of these results, we discuss the probable absence of Na+-ATPases in plants, and the function of Ca2+-ATPases that are expressed only under conditions of stress.

barley calcium ATPases Cymodocea PMR1-ATPase sodium ATPase sodium efflux 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almagro A, Prista C, Benito B, Lourero-Dias M C and Ramos J 2001 Cloning and expression of two genes coding for sodium pumps in the salt-tolerant yeast Debaryomyces hansenii. J. Bacteriol. 183, 3251–3255.Google Scholar
  2. Altschul S F, Gish W, Miller W, Myers E W and Lipman D J 1990 Basic local alignment search tool. J. Mol. Biol. 215, 403–410.Google Scholar
  3. Amtmann A and Sanders D 1999 Mechanisms of Na+ uptake by plant cells. Adv. Bot. Res. 29, 75–112.Google Scholar
  4. Antebi A and Fink G R 1992 The yeast Ca2+-ATPase homologue, PMR1, is required for normal Golgi function and localizes in a novel Golgi-like distribution. Mol. Biol. Cell 3, 633–654.Google Scholar
  5. Apse M P, Aharon G S, Snedden W A and Blumwald E 1999 Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285, 1256–1258.Google Scholar
  6. Axelsen K B and Palmgren M G 1998 Evolution of substrate specificities in the P-type ATPase superfamily. J. Mol. Evol. 46, 84–101.Google Scholar
  7. Bañuelos M A, Klein R D, Alexander-Bowman S J and Rodríguez-Navarro A 1995a A potassium transporter of the yeast Schwanniomyces occidentalis homologous to the Kup system of Escherichia coli has a high concentrative capacity. EMBO J. 14, 3021–3027.Google Scholar
  8. Bañuelos M A, Quintero F J and Rodríguez-Navarro A 1995b Functional expression of the ENA1 (PMR2)-ATPase of Saccharomyces cerevisiae in Schizosaccharomyces pombe. Biochim. Biophys. Acta 1229, 233–238.Google Scholar
  9. Bañuelos M A and Rodríguez-Navarro A 1998 P-type ATPases mediate sodium and potassium effluxes in Schwanniomyces occidentalis. J. Biol. Chem. 273, 1640–1646.Google Scholar
  10. Benito B, Garciadeblas B and Rodríguez-Navarro A 2000 Molecular cloning of the calcium and sodium ATPases in Neurospora crassa. Mol. Microbiol. 35, 1079–1088.Google Scholar
  11. Berridge M J, Bootman M D and Lipp P 1998 Calcium - a life and death signal. Nature 395, 645–648.Google Scholar
  12. Blumwald E, Aharon G S and Apse M P 2000 Sodium transport in plant cells. Biochim. Biophys. Acta 1465, 140–151.Google Scholar
  13. Clarke D M, Loo T W, Inesi G and MacLennan D H 1989 Location of high affinity Ca2+ - binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase. Nature 339, 476–478.Google Scholar
  14. Cone K C, Burr F A and Burr B 1986 Molecular analysis of the maize anthocyanin regulatory locus. Proc. Natl. Acad. Sci. USA 83, 9631–9635.Google Scholar
  15. Cunningham K W and Fink G R 1994 Ca2+ transport in Saccharomyces cerevisiae. J. Exp. Biol. 196, 157–166.Google Scholar
  16. Darley C P, Wuytswinkel O C M v, Woude K v d and Mager W H 2000 Arabidopsis thaliana and Saccharomyces cerevisiae NHX1 genes encode amiloride sensitive electroneutral Na+/H+ exchangers. Biochim. J. 351, 241–249.Google Scholar
  17. Dürr G, Strayle J, Plemper R, Elbs S, Klee S K, Catty P, Wolf D H and Rudolph H K 1998 The medial-Golgi ion pump Pmr1 supplies the yeast secretory pathway with Ca2+ and Mn2+ required for glycosylation, sorting, and endoplasmic reticulum associated protein degradation. Mol. Biol. Cell 9, 1149–1162.Google Scholar
  18. Evans D E and Williams L E 1998 P-type calcium ATPases in higher plants - biochemical, molecular and functional properties. Biochim. Biophys. Acta 1376, 1–25.Google Scholar
  19. Garciadeblas B, Rubio F, Quintero F J, Bañuelos M A and Rodríguez-Navarro A 1993 Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae. Mol. Gen. Genet. 236, 363–368.Google Scholar
  20. Geisler M, Axelsen K B, Harper J F and Palmgren M G 2000a Molecular aspects of higher plant Ca2+-ATPases. Biochim. Biophys. Acta 1465, 52–78.Google Scholar
  21. Geisler M, Frangne N, Gomès E, Martinola E and Palmgren M G 2000b The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast. Plant Physiol. 124, 1814–1827.Google Scholar
  22. Gunteski-Hamblin A, Clarke D M and Shull G E 1992 Molecular cloning and tissue distribution of alternatively spliced messenger RNAs encoding possible mammalian homologues of the yeast secretory pathway calcium pump. Biochemistry 31, 7600–7608.Google Scholar
  23. Haro R, Garciadeblas B and Rodríguez-Navarro A 1991 A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett. 291, 189–191.Google Scholar
  24. Hassidim M, Braun Y, Lerner H R and Reinhold L 1990 Na+/H+ and K+/H+ antiport in root membrane vesicles isolated from the halophyte Atriplex and the glycophyte cotton. Plant Physiol. 94, 1795–1801.Google Scholar
  25. Hirschi K 2001 Vacuolar H+/Ca2+ transport: who's directing the traffic? Trends Plant Sci. 6, 100–104.Google Scholar
  26. Jacobsen T and Adams R M 1958 Salt and silt in ancient mesopotamian agriculture. Science 128, 1251–1258.Google Scholar
  27. Jaillard B, Guyon A and Maurin A 1991 Structure and composition of calcified roots, and their identification in calcareous soils. Geoderma 50, 197–210.Google Scholar
  28. Jeschke WD 1982 Shoot-dependent regulation and potassium fluxes in roots of whole barley seedlings. J. Exp. Bot. 33, 601–618.Google Scholar
  29. Jeschke W D and Stelter W 1973 K+-dependent net Na+ efflux in roots of barley plants. Planta 114, 251–258.Google Scholar
  30. Kang H A, Kim J-Y, Ko S-M, Park C S, Ryu D D Y, Sohn J-H, Choi E-S and Rhee S-K 1998 Cloning and characterization of the Hansenula polymorpha homologue of the Saccharomyces cerevisiae PMR1 gene. Yeast 14, 1233–1240.Google Scholar
  31. Katsuhara M, Yazaki Y, Sakano K and Kawasaki T 1997 Intracellular pH and proton-transport in barley root cells under salt stress: in vivo 31P-NMR study. Plant Cell Physiol. 38, 155–160.Google Scholar
  32. Kiegle E, Moore C A, Haseloff J, Tester M A and Knight M R 2000 Cell-type-specific calcium responses to drough, salt and cold in the Arabidopsis root. Plant J. 23, 267–278.Google Scholar
  33. Kiegle E A and Bisson M A 1996 Plasma membrane Na+ transport in a salt-tolerant Charophyte. Isotopic fluxes, electrophysiology, and thermodynamics in plant adapted to saltwater and freshwater. Plant Physiol. 111, 1191–1197.Google Scholar
  34. Knight H, Trewavas A J and Knight M R 1997 Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J. 12, 1067–1078.Google Scholar
  35. Lazof D B and Bernstein N 1999 The NaCl induced inhibition of shoot growth: the case for disturbed nutrition with special consideration of calcium. Adv. Bot. Res. 29, 113–189.Google Scholar
  36. Maathuis F J M and Amtmann A 1999 K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann. Bot. 84, 123–133.Google Scholar
  37. Marschner H. 1995. Mineral nutrition of higher plants. London: Academic Press. Mennen H, Jacoby B and Marschner H 1990 Is sodium proton antiport ubiquitous in plant cells.J. Plant. Physiol. 180–183.Google Scholar
  38. Møller J V, Juul B and Maire M l 1996 Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim. Biophys. Acta 1286, 1–51.Google Scholar
  39. Niu X, Bressan R A, Hasegawa P M and Pardo J M 1995 Ion homeostasis in NaCl stress environments. Plant Physiol. 109, 735–742.Google Scholar
  40. Padam E and Schuldiner S 1994 Molecular biology of Na+/H+ antiporters: molecular devices that couple the Na+ and H+ circulation in cells. Biochim. Biophys. Acta 1187, 206–210.Google Scholar
  41. Park C S, Kim J-Y, Crispino C, Chang C C and Ryu D D Y 1998 Molecular cloning of YlPMR1, a S. cerevisiae PMR1 homologue encoding a novel P-type secretory pathway Ca2+-ATPase, in the yeast Yarrowia lipolytica. Gene 206, 107–116.Google Scholar
  42. Pérez-Prat E, Narasimhan M L, Binzel M L, Botella M A, Chen Z, Valpuesta V, Bressan R A and Hasegawa P M 1992 Induction of a putative Ca2+-ATPase mRNA in NaCl-adapted cells. Plant Physiol. 100, 1471–1478.Google Scholar
  43. Pittman J K, Mills R F, O'Connor C D and Williams L E 1999 Two additional type IIA Ca2+-ATPases are expressed in Arabidopsis thaliana: evidence that type IIA sub-groups exist. Gene 236, 137–147.Google Scholar
  44. Quintero F J, Blatt MR and Pardo JM 2000 Functional conservation between yeast and plant endosomal Na+/H+ antiporters. FEBS Lett. 471, 224–228.Google Scholar
  45. Rodríguez-Navarro A 2000 Potassium transport in fungi and plants. Biochim. Biophys. Acta 1469, 1–30.Google Scholar
  46. Rodríguez-Navarro A, Quintero F J and Garciadeblás B 1994 Na+-ATPases and Na+/H+ antiporters in fungi. Biochim. Biophys. Acta 1187, 203–205.Google Scholar
  47. Sanders D, Brownlee C and Harper J F 1999 Communicating with calcium. Plant Cell 11, 691–706.Google Scholar
  48. Serrano R 1988 Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochim. Biophys. Acta 947, 1–28.Google Scholar
  49. Shi H, Ishitani M, Kim C and Zhu J-K 2000 The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Natl. Acad. Sci. USA 97, 6896–6901.Google Scholar
  50. Shono M, Hara Y, Wada M and Fujii T 1996 A sodium pump in the plasma membrane of the marine alga Heterosigma akashiwo. Plant Cell Physiol. 37, 385–388.Google Scholar
  51. Shono M, Wada M and Fujii T. 1998. Characterization and molecular cloning of Na+-ATPase on plasma membrane of the marine raphidophycean Heterosigma akashiwo. In 11th International Workshop on Plant Membrane Biology. Cambridge, UK. Eds. Tester M, Morris C, Davies J, p 15. The Society for Experimental Biology.Google Scholar
  52. Strayle J, Pozzan T and Rudolph H K 1999 Steady-state free Ca2+ in the yeast endoplasmic reticulum reaches only 10 µM and is mainly controlled by the secretory pathway pump Pmr1. EMBO J. 18, 4733–4743.Google Scholar
  53. Sudbrak R, Brown J, Dobson-Stone C, Ramser J, White J, Healy E, Dissanayake M, larrègue M, Perrussel M, Lehrach H, Munro C S, Strachan T, Burge S, Hovnanian A and Monaco A P 2000 Hailey Hailey disease is caused by mutations in ATP2C1 encoding a novel Ca2+ pump. Hum. Mol. Genet. 9, 1131–1140.Google Scholar
  54. Thompson J D 1997 The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.Google Scholar
  55. Trewavas A 1999 Le calcium, c'est la vie: calcium makes waves. Plant Physiol. 120, 1–6.Google Scholar
  56. Tyerman S D and Skerrett I M 1999 Root ion channels and salinity. Sci. Hort. 78, 175–235.Google Scholar
  57. Walker D J, Black C R and Miller A J 1998 The role of cytosolic potassium and pH in the growth of barley roots. Plant Physiol. 118, 957–964.Google Scholar
  58. Watanabe Y, Iwaki T, Shimomno Y, Ichimiya A, Nagaoka Y and Tamai Y 1999 Characterization of the Na+-ATPase gene (ZENA1) from the salt-tolerant yeast Zygosaccharomyces rouxii. J. Biosci. Bioeng. 88, 136–142.Google Scholar
  59. Webb M A 1999 Cell-mediated crystallization of calcium oxalate in plants. Plant Cell 11, 751–761.Google Scholar
  60. White P J 1999 The molecular mechanism of sodium influx to root cells. Trends Plant Sci. 4, 245–246.Google Scholar
  61. Wilson C and Shannon M C 1995 Salt-induced Na+/H+ antiport in root plasma membrane of a glycophytic and halophytic species of tomato. Plant Sci. 107, 147–157.Google Scholar
  62. Wimmers L E, Ewing N E and Bennet A B 1992 Higher plant Ca2+-ATPase: primary structure and regulation of mRNA abundance by salt. Proc. Natl. Acad. Sci. USA 89, 9205–9209.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • B. Garciadeblas
    • 1
  • B. Benito
    • 1
  • A. Rodríguez-Navarro
    • 1
  1. 1.Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros AgrónomosUniversidad Politécnica de MadridMadridSpain

Personalised recommendations