Advertisement

Hydrobiologia

, Volume 455, Issue 1–3, pp 1–18 | Cite as

Zooplankton composition, dominance and abundance as indicators of environmental compartmentalization in Jurumirim Reservoir (Paranapanema River), São Paulo, Brazil

  • Marcos Gomes Nogueira
Article

Abstract

Spatial and temporal patterns in the distribution of the zooplankton in a large tropical reservoir were investigated for a year. The zooplankton was sampled at 10 limnetic stations. Rotifera were richest in number of species and individuals, especially in transitional river–lake zones. They were dominant during the summer in nine sampling stations, and decreased in spring. The main species were Polyarthra vulgaris, Keratella americana, K. cochlearis and Conochilus unicornis. Polyarthra vulgaris was widely distributed. Keratella was more abundant at upstream stations, and a dense population of C. unicornis was observed in a lateral, sheltered compartment. Among copepods, Calanoida were more abundant in spring and Cyclopoida in autumn. Longitudinal gradients in the Calanoida/Cyclopoida relation were observed, with the predominance of Cyclopoida at upstream sampling stations and Calanoida in more lacustrine zones towards the dam. Notodiaptomus iheringi, Thermocyclops minutus and T. decipiens were the main species. Diaphanosoma birgei, the most abundant cladoceran, mainly occurred in lacustrine zones, while Moina minuta was more abundant at riverine sampling stations, generally in association with Bosminopsis deitersi. Peaks of tintinnid protozoans were observed in upstream zones during summer and spring.

tropical reservoirs large reservoirs zooplankton spatial distribution temporal distribution Brazil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arcifa, M. S., 1984. Zooplankton composition of ten reservoirs in Southern Brazil. Hydrobiologia 113: 137–145.Google Scholar
  2. Arcifa, M. S., E. T. Gomes & A. J. Meschiatti, 1992. Composition and fluctuations of the zooplankton of a tropical Brazilian reservoir. Arch. Hydrobiol. 123: 479–495.Google Scholar
  3. Arruda, J. A., G. R. Marzolf & R. T. Faulk, 1983. The role of suspended sediments in the nutrition of zooplankton in turbid reservoirs. Ecology64: 1225–1235.Google Scholar
  4. Barbieri, S. M. & M. J. L. Godinho-Orlandi, 1989. Ecological studies on the planktonic protozoa of a eutrophic reservoir (Rio Grande Reservoir — Brazil). Hydrobiologia 183: 1–10.Google Scholar
  5. Benndorf, J. & M. Henning, 1989. Daphnia and toxic blooms of Microcystis aeruginosa in Bautzen Reservoir (GDR). Int. Rev. ges. Hydrobiol. 74: 233–248.Google Scholar
  6. Betsil, R. K. & M. J. Van Den Avyle, 1994. Spatial heterogeneity of reservoir zooplankton: a matter of timing? Hydrobiologia 277: 63–70.Google Scholar
  7. Blancher, E. C., 1984. Zooplankton–trophic state relationships in some north and central Florida lakes. Hydrobiologia 109: 251–263.Google Scholar
  8. Carrick, H. J., G. L. Fahnenstiel, E. F. Stoermer, & R. G. Wetzel, 1991. The importance of zooplankton–protozoan trophic couplings in Lake Michigan. Limnol. Oceanogr. 36: 1335–1345.Google Scholar
  9. Carvalho, E. D., C. Y. Fujihara & R. Henry, 1994. Fish communities of the Jurumirim Reservoir (Paranapanema River, São Paulo State, Brazil): composition, diversity and fish yields. Abstracts Book of the VII Congress Societas Europea Ichthyologorum. Fish and their environment. Oviedo, Spain. p. 19. (abstract).Google Scholar
  10. De Mott, W. R., 1986. The role of taste in food selection by freshwater zooplankton. Oecologia 69: 334–340.Google Scholar
  11. Dirnberger, J. M. & S. T. Threlkeld, 1986. Advective effects of a reservoir flood on zooplankton abundance and dispersion. Freshwat. Biol. 16: 387–396.Google Scholar
  12. Dumont, H. J., 1977. Biotic factors in the population dynamics of rotifers. Arch. Hydrobiol. 8: 98–122.Google Scholar
  13. Duncan, A., 1984. Assessment of factors influencing the composition, body size and turnover rate of zooplankton in Parakrama Samudra, an irrigation reservoir in Sri Lanka. Hydrobiologia 113: 201–215.Google Scholar
  14. Duncan, A. & R. D. Gulati, 1981. Parakrama Samudra (Sri Lanka) project — a study of a tropical lake ecosystem, 3. Composition, density and distribution of the zooplankton in 1979. Verh. int. Ver. Limnol. 21: 1001–1008.Google Scholar
  15. Esteves, K. E. & S. Sendacz, 1988. Relações entre a biomasa do zooplancton e o estado trófico de reservatórios do Estado de São Paulo. Acta Limnol. Brasil. 2: 587–604.Google Scholar
  16. Fulton, R. S. III, 1988. Grazing on filamentous algae by herbivorous zooplankton. Freshwat. Biol. 20: 263–271.Google Scholar
  17. Gannon, J. E. & R. S. Stemberger, 1978. Zooplankton (specially crustaceans and rotifers) as indicators of water quality. Trans. amer. Micros. Soc. 97: 16–35.Google Scholar
  18. Gates, M. A., 1984. Quantitative importance of ciliates in the planktonic biomass of lake ecosystems. Hydrobiologia 108: 233–238.Google Scholar
  19. Gizinski, A., L. A. Bledzki, A. Kentzer, R. Wisniewski, R. & R. Zytkowicz, 1989. Hydrobiological characteristics of the lowland rheolimnic Wloclawek Reservoir on the Vistula River. Ekol. pol. 37(3/4): 359–403.Google Scholar
  20. Gracia, M. del P., C. Castellon, J. Igual & R. Suniyer, 1989. Ciliate protozoan communities in a fluvial ecosystem. Hydrobiologia 183: 11–31.Google Scholar
  21. Green, J., 1994. The temperate-tropical gradient of planktonic Protozoa and Rotifera. Hydrobiologia 272: 13–26.Google Scholar
  22. Hart, R. C., 1986. Zooplankton abundance, community structure and dynamics in relation to inorganic turbity, and their implica-tions for a potential fishery in subtropical lake Le Roux, South Africa. Freshwat. Biol. 16: 351–371.Google Scholar
  23. Hart, R. C., 1987. Observations on calanoid diet, seston, phytoplankton–zooplankton relationships, and interferences on calanoid food limitation in a silt-laden reservoir. Arch. Hydrobiol. 111: 67–82.Google Scholar
  24. Hawkins, P. & W. Lampert, 1989. The effect of Daphnia body size on filtering rate inhibition in the presence of filamentous cyanobacterium. Limnol. Oceanogr. 34: 1084–1089.Google Scholar
  25. Henry, R., 1990. Amônia ou fosfato como agente estimulador. do crescimento do fitoplâncton na Represa de Jurumirim (Rio Paranapanema, SP)? Rev. brasil. biol. 50: 883–892.Google Scholar
  26. Henry, R., 1992. The oxygen deficit in Jurumirim Reservoir (Paranapanema River, São Paulo, Brazil). Jap. J. Limnol. 53: 379–384.Google Scholar
  27. Henry, R., 1993a. Thermal regime and stability of Jurumirim Reservoir (Paranapanema River, São Paulo, Brazil). Int. Rev. ges. Hydrobiol. 78: 501–511.Google Scholar
  28. Henry, R., 1993b. Primary production by phytoplankton and its controlling factors in Jurumirim Reservoir (São Paulo, Brazil). Rev. brasil. Biol. 53: 489–499.Google Scholar
  29. Henry, R. & F. E. Maricato, 1996. Sedimentation rates of tripton in Jurumirim Reservoir (São Paulo, Brazil). Limnologica 26: 15–25.Google Scholar
  30. Horn, H., W. Horn & M. Kohlsdorf, 1987. Theoretical and pratical investigations on the heterogeneous distribution of plankton in the main basin of the Saindebach storage reservoir. Acta hydrochim. Hydrobiol. 15: 327–350.Google Scholar
  31. Jack, J. D. & J. J Gilbert, 1993a. Susceptibilities of differentsized ciliates to diet suppression by small and large cladocerans. Freshwat. Biol. 29: 19–29.Google Scholar
  32. Jack, J. D. & J. J. Gilbert, 1993b. The effect of suspended clay on ciliate population growth rates. Freshwat. Biol. 29: 385–394.Google Scholar
  33. Kerfoot, C. W. & K. L. Kirk, 1991. Degree of taste discrimination among suspension-feeding cladocerans and copepods: implications for detritivory and herbivory. Limnol. Oceanogr. 36: 1107–1123.Google Scholar
  34. Khan, M. A. & C. Ejike, 1984. Limnology and plankton periodicity of Jos Plateau Water Reservoir, Nigeria, West Africa. Hydrobiologia 114: 189–199.Google Scholar
  35. Laybourn-Parry, J., 1992. Protozoan Plankton Ecology. Chapman & Hall, London, 231 pp.Google Scholar
  36. Lewis, W. M. Jr., 1980. Evidence for stable zooplankton community structure gradients maintained by predation. In Kerfoot, C. W. (ed.), Evolution and Ecology of Zooplankton Communities. The University Press of New England, Hanover, NH: 565–634.Google Scholar
  37. Maemets, A., 1983. Rotifers as indicators of lake types in Estonia. Hydrobiologia 104: 357–361.Google Scholar
  38. Margalef, R., 1983. Limnología. Ediciones Omega, Barcelona. 1010 pp.Google Scholar
  39. Marzolf, R. G., 1990. Reservoirs as environments for zooplankton. In Thornton, K. W., L. B. Kimmel & F. E Payne (eds), Reser-voir Limnology: Ecological Perspectives. J. Wiley & Sons, New York: 195–208.Google Scholar
  40. Masundire, H., 1989a. Zooplankton population dynamics in the Sanyati Basin, Lake Kariba, Zimbabwe. Arch. Hydrobiol. 33: 469–473.Google Scholar
  41. Masundire, H., 1989b. Zooplankton composition and abundance in relation to water transparency and predation in Lake Kariba, Zimbabwe. Arch. Hydrobiol. 33: 513–520.Google Scholar
  42. Matsumura-Tundisi, T., K. Hino & S.M. Claro, 1981. Limnological studies at 23 reservoirs in southern part of Brazil. Verh. int. Ver. Limnol. 21: 1040–1047.Google Scholar
  43. Matsumura-Tundisi, T., A. C. Rietzler & J. G. Tundisi, 1989. Biomass (dry weight and carbon content) of plankton crustacea from Broa Reservoir (São Carlos, SP — Brazil) and its fluctuation across one year. Hydrobiologia 179: 229–236.Google Scholar
  44. Matsumura-Tundisi, T., S. N. Leitão, L. S. Aguena & J. Miyahara, 1990. Eutrofização da Represa de Barra Bonita: estrutura e organização da comunidade de Rotifera. Rev. brasil. biol. 50: 923–935.Google Scholar
  45. Nogrady, T., 1983. Succession of planktonic rotifer populations in some lakes of the Eastern Rift Valley, Kenya. Hydrobiologia 98: 45–54.Google Scholar
  46. Nogueira, M. G., 2000. Phytoplankton composition, dominance and abundance as indicators of environmental compartmentalization in Jurumirim Reservoir (Paranapanema River), São Paulo, Brazil. Hydrobiologia 431: 115–128.Google Scholar
  47. Nogueira, M. G. & T. Matsumura-Tundisi, 1996. Limnologia de um sistema artificial raso (Represa do Monjolinho — São Carlos, SP). Dinâmica das populações planctônicas. Acta Limnol. Brasil. 8: 149–168.Google Scholar
  48. Nogueira, M. G. & E. Panarelli, 1997. Estudo da migração vertical das populações zooplanctônicas na Represa de Jurumirim (Rio Paranapanema — SP). Acta Limnol. Brasil. 9: 55–81.Google Scholar
  49. Nogueira, M. G., R. Henry & F. E. Maricatto, 1999. Spatial and temporal heterogeneity in the Jurumirim Reservoir, São Paulo, Brazil. Lakes Reservoirs: Res. Manage. 4: 107–120.Google Scholar
  50. Orcutt, D. Jr. & M. L. Pace, 1984. Seasonal dynamics of rotifer and crustacean zooplankton populations in a eutrophic, monomitic lake with a note on rotifer sampling techniques. Hydrobiologia 119: 73–80.Google Scholar
  51. Pace, M. L., 1986. An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnol. Oceanogr. 31: 45–55.Google Scholar
  52. Pace, L. M. & J. D. Orcutt Jr, 1981. The relative importance of protozoans, rotifers, and crustaceans in a freshwater zooplankton community. Limnol. Oceanogr. 26: 822–830.Google Scholar
  53. Paggi, J. C. & S. Jose de Paggi, 1990. Zooplancton de ambientes lóticos e lênticos do Rio Paraná Médio. Acta Limnol. Brasil. 3: 685–719.Google Scholar
  54. Pinto-Coelho, R. M., 1987. Flutuações sazonais e de curta duração na comunidade zooplanctônica do Lago Paranoá, Brasília-DF, Brasil. Rev. brasil. biol. 47: 17–29.Google Scholar
  55. Richardson, W. B., 1992. Microcrustacea in flowing water: experimental analysis of washout times and a field test. Freshwat. Biol., 28: 217–230.Google Scholar
  56. Rocha, O & T. Matsumura-Tundisi, 1984. Biomass and production of Argyrodiaptomus furcatus, a tropical calanoid copepod in Broa Reservoir, Southern Brazil. Hydrobiologia 113: 307–311.Google Scholar
  57. Rocha, O., T. Matsumura-Tundisi, J. G. Tundisi & C. P. Fonseca, 1990. Predation on and by pelagic Turbellaria in some lakes in Brazil. Hydrobiologia 198: 91–101.Google Scholar
  58. Rocha, O., S. Sendacz & T. Matsumura-Tundisi, 1995. Composition, biomass and productivity of zooplankton in natural lakes and reservoirs of Brazil. In Tundisi, J. G., C. E. Bicudo & T. Matsumura-Tundisi (eds), Limnology in Brazil. Brazilian Academy of Sciences and Brazilian Limnological Society, São Paulo: 155–165.Google Scholar
  59. Rolhf, F. J., 1992. Nt sys-pc; numerical taxonomy and multivariate analysis system. Exeter Software, NY.Google Scholar
  60. Sladecek, V., 1983. Rotifers as indicators of water quality. Hydrobiologia 100: 169–201.Google Scholar
  61. Sorokin, Y., 1979. Onmethodology of lake ecosystem studies. Arch. Hydrobiol. 13: 225–233.Google Scholar
  62. Swar, D. B. & C. H. Fernando, 1980. Some studies on the ecology of limnetic crustacean zooplankton in Lakes Begnas and Rupa, Pokhara Valley, Nepal. Hydrobiologia 70: 235–245.Google Scholar
  63. Tait, R. D., R. J. Shiel & W. Koste, 1984. Structure and dynamics of zooplankton communities, Alligator River region, N. T., Australia. Hydrobiologia 113: 1–13.Google Scholar
  64. Thornton, W. K., 1990. Sedimentary processes. In: Thornton, K. W., N. L. Kimmel & F. E. Payne (eds), Reservoir Limnology: Ecological Perspectives. J. Wiley & Sons, NY: 43–69.Google Scholar
  65. Threlkeld, S. & E. Choinsk, 1985. Plankton in a rapidly flushed impoudment: spatial distribution, population dynamics and community structure. Mem. Ist. ital. Idrobiol. 43: 105–118.Google Scholar
  66. Tundisi, J. G., 1981. Typology of reservoirs in Southern Brazil. Verh. int. Ver. Limnol. 21: 1031–1039.Google Scholar
  67. Tundisi, J. G. & T. Matsumura-Tundisi, 1990. Limnology and eutrophication of Barra Bonita Reservoir, S. Paulo State, Southern, Brazil. Arch. Hydrobiol. 33: 661–676.Google Scholar
  68. Tundisi, J. G., T. Matsumura-Tundisi, M. C. Calijuri & E. M. L. Novo, 1991. Comparative limnology of five reservoirs in the Middle Tietê River, S. Paulo State. Verh. int. Ver. Limnol. 24: 1489–1496.Google Scholar
  69. Uku, J. N. & K. M. Mavuti, 1994. Comparative limnology, species diversity and biomass relationship of zooplankton and phytoplankton in five freshwater lakes in Kenya. Hydrobiologia 272: 251–258.Google Scholar
  70. Urabe, J., 1989. Relative importance of temporal and spatial heterogeneity in the zooplankton community of an artificial reservoir. Hydrobiologia 184: 1–6.Google Scholar
  71. Urabe, J., 1990. Stable horizontal variation in the zooplankton community structure of a reservoir maintained by predation and competition. Limnol. Oceanogr. 35: 1703–1717.Google Scholar
  72. Urabe, J. & M. Murano, 1986. Seasonal and horizontal variations in the zooplankton community of Ogochi Reservoir, Tokyo. Bull. Plankton Soc. Jpn. 33: 101–112.Google Scholar
  73. Van Den Brink, F. W. B., M. M. Van Katwijk & G. Van Der Velde, 1994. Impact of hydrology on phyto and zooplankton community composition in floodplain lakes along the Lower Rhine and Meuse. J. Plankton Res. 16: 351–373.Google Scholar
  74. Zdzislaw, K., 1990. Ecology of Low Land Zegrzynski Reservoir near Warsaw. Arch. Hydrobiol. 33: 841–850.Google Scholar
  75. Wylie, J. L. & D. J. Currie, 1991. The relative importance of bacteria and algae as food sources for crustacean zooplankton. Limnol. Oceanogr. 36: 708–728.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Marcos Gomes Nogueira
    • 1
  1. 1.Departamento de Zoologia, Instituto de BiociênciasUniversidade Estadual Paulista (UNESP)Botucatu, SPBrazil

Personalised recommendations