Space Science Reviews

, Volume 96, Issue 1–4, pp 165–194 | Cite as

Cratering Chronology and the Evolution of Mars

  • William K. Hartmann
  • Gerhard Neukum


Results by Neukum et al. (2001) and Ivanov (2001) are combined with crater counts to estimate ages of Martian surfaces. These results are combined with studies of Martian meteorites (Nyquist et al., 2001) to establish a rough chronology of Martian history. High crater densities in some areas, together with the existence of a 4.5 Gyr rock from Mars (ALH84001), which was weathered at about 4.0 Gyr, affirm that some of the oldest surfaces involve primordial crustal materials, degraded by various processes including megaregolith formation and cementing of debris. Small craters have been lost by these processes, as shown by comparison with Phobos and with the production function, and by crater morphology distributions. Crater loss rates and survival lifetimes are estimated as a measure of average depositional/erosional rate of activity.

We use our results to date the Martian epochs defined by Tanaka (1986). The high crater densities of the Noachian confine the entire Noachian Period to before about 3.5 Gyr. The Hesperian/Amazonian boundary is estimated to be about 2.9 to 3.3 Gyr ago, but with less probability could range from 2.0 to 3.4 Gyr. Mid-age dates are less well constrained due to uncertainties in the Martian cratering rate. Comparison of our ages with resurfacing data of Tanaka et al. (1987) gives a strong indication that volcanic, fluvial, and periglacial resurfacing rates were all much higher in approximately the first third of Martian history. We estimate that the Late Amazonian Epoch began a few hundred Myr ago (formal solutions 300 to 600 Myr ago). Our work supports Mariner 9 era suggestions of very young lavas on Mars, and is consistent with meteorite evidence for Martian igneous rocks 1.3 and 0.2 – 0.3 Gyr old. The youngest detected Martian lava flows give formal crater retention ages of the order 10 Myr or less. We note also that certain Martian meteorites indicate fluvial activity younger than the rock themselves, 700 Myr in one case, and this is supported by evidence of youthful water seeps. The evidence of youthful volcanic and aqueous activity, from both crater-count and meteorite evidence, places important constraints on Martian geological evolution and suggests a more active, complex Mars than has been visualized by some researchers.


Lava Flow Formal Crater Martian Surface Small Crater Morphology Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bogard, D.D., and Johnson, P.:1983, 'Martian Gases in an Antarctic Meteorite?', Science 221, 651-654.Google Scholar
  2. Bridges, J.C., and Grady, M.M.:2000, 'Evaporite Mineral Assemblages in the Nakhlite (Martian) Meteorites', Earth Planet. Sci. Lett. 176, 267-279.Google Scholar
  3. Chapman, C.R.:1974, 'Cratering on Mars. I Cratering and Obliteration History. II Implications for Future Cratering Studies from Mariner 4 Reanalysis', Icarus 22, 272-300.Google Scholar
  4. Chapman, C.R., Pollack, J., and Sagan, C.:1969, 'An Analysis of the Mariner 4 Photography of Mars', Astron. J. 74, 1039-1051.Google Scholar
  5. Golombek, M.P., and Bridges, N.T.:2000, 'Erosion Rates on Mars and Implications for Climate Change:Constraints from the Pathfinder Landing Site', J. Geophys. Res. 105, 1841-1853.Google Scholar
  6. Greeley, R., Kuzmin, R.O., and Haberle, R.M.:2001, 'Aeolian Processes and Their Effects on Understanding the Chronology of Mars', Space Sci. Rev., this volume.Google Scholar
  7. Grier, J.A., Hartmann, W.K., Berman, D.C., Goldman, E.B., Esquerdo, G.A.:2000, 'Constraining the Age of Martian Polar Strata by Crater Counts', Amer. Astron. Soc., DPS Meeting, abstracts #32, #58.03.Google Scholar
  8. Grieve, R.A., and Shoemaker, E.:1994, 'The Record of Past Impacts on Earth', in T. Gehrels (ed.)Hazards Due to Comets and Asteroids, Univ. Arizona Press, Tucson, Arizona, pp. 417-462.Google Scholar
  9. Hartmann, W.K.:1966a, 'Martian Cratering', Icarus, 5, 565-576.Google Scholar
  10. Hartmann, W.K.:1966b, 'Early Lunar Cratering', Icarus, 5, 406-418.Google Scholar
  11. Hartmann, W.K.:1971, 'Martian Cratering III:Theory of Crater Obliteration', Icarus 15, 410-428.Google Scholar
  12. Hartmann, W.K.:1973, 'Martian Cratering 4: Mariner 9 Initial Analysis of Cratering Chronology', J. Geophys. Res. 78, 4096-4116.Google Scholar
  13. Hartmann, W.K.:1977, 'Relative Crater Production Rates on Planets', Icarus 31, 260-276.Google Scholar
  14. Hartmann, W.K.:1978, 'Martian Cratering V: Toward an Empirical Martian Chronology, and its Implications', Geophys. Res. Lett. 5, 450-452.Google Scholar
  15. Hartmann, W.K.:1984, 'Does “saturation” Cratering Exist in the Solar System?', Proc. 15th Lunar Planet. Sci. Conf., 348-349 (abstract).Google Scholar
  16. Hartmann, W.K.:1995, 'Planetary Cratering I: Lunar Highlands and Tests of Hypotheses on Crater Populations', Meteoritics 30, 451.Google Scholar
  17. Hartmann, W.K.:1998, 'Martian Crater Populations and Obliteration Rates:First Results from Mars Global Surveyor', Proc. 29th Lunar Planet. Sci. Conf., abstract #1115.Google Scholar
  18. Hartmann, W.K.:1999, 'Martian Cratering VI. Crater Count Isochrons and Evidence for Recent Volcanism from Mars Global Surveyor', Meteoritics Planet. Sci. 34, 167-177.Google Scholar
  19. Hartmann, W.K.:2001, 'Martian Seeps and Their Relation to Youthful Geothermal Activity', Space Sci. Rev., this volume.Google Scholar
  20. Hartmann, W.K., and Gaskell, R.W.:1997, 'Planetary Cratering 2: Studies of Saturation Equilibrium', Meteoritics Planet. Sci. 32, 109-121.Google Scholar
  21. Hartmann, W.K., and Berman, D.C.:2000, 'Elysium Planitia Lava Flows: Crater Count Chronology and Geological Implications', J. Geophys. Res. 105, 15,011-15,025.Google Scholar
  22. Hartmann, W.K., Cruikshank, D.P., Degewij, J., Capps, R.W.:1981, 'Surface materials on unusual planetary object Chiron', Icarus 47, 333-341.Google Scholar
  23. Hartmann, W.K., Malin, M.C., McEwen, A., Carr, M., Soderblom, L., Thomas, P., Danielson, E., James, P., and Veverka, J.:1999, 'Recent Volcanism on Mars from Crater Counts', Nature 397, 586-589.Google Scholar
  24. Ivanov, B.A.:2001, 'Mars/Moon Cratering Rate Ratio Estimates', this volume.Google Scholar
  25. Jones, K.L.:1974, 'Martian Obliterational History', Ph.D. Thesis Brown Univ., Providence, RI, USA.Google Scholar
  26. Keszthelyi, K., McEwen, A.S., and Thordarson, T.:2000. 'Terrestrial Analogs and Thermal Models for Martian Flood Lavas', J. Geophys. Res. 105, 15,027-15,050.Google Scholar
  27. Leighton, R.B., Murray, B., Sharp, R., Allen, J., and Sloan, R.:1965, 'Mariner IV Photography of Mars:Initial Results', Science 149, 627-630.Google Scholar
  28. Lissauer, J.J., Squyres, S.W., and Hartmann, W.K.:1988, 'Bombardment History of the Saturn System', J. Geophys. Res. 93, 13,776-13,804.Google Scholar
  29. Malin, M.C., and Edgett, K.S.:2000a, 'Evidence for Recent Groundwater Seepage and Surface Runoff on Mars', Science 288, 2330-2335.Google Scholar
  30. Malin, M.C., and Edgett, K.S.:2000b, 'Sedimentary Rocks of Early Mars', Science 290, 1927-1937.Google Scholar
  31. Malin, M.C., Carr, M.H., Danielson, G.E., Davies, M.E., Hartmann, W.K., Ingersoll, A.P., James, P.B., Masursky, H., McEwen, A.S., Soderblom, L.A., Thomas, P., Veverka, J., Caplinger, M.A., Ravine, M.A., Soulanille, T.A., and Warren, J.L.:1998, 'Early Views of the Martian Surface from the Mars Orbiter Camera of Mars Global Surveyor', Science 279, 1681.Google Scholar
  32. Melosh, H.J.:1989, 'Impact Cratering. A Geologic Process.', Oxford Univ. Press, New York.Google Scholar
  33. Neukum, G.:1983, Meteoritenbombardement und Datierung planetarer Oberflächen, Habilitation Dissertation for Faculty Membership, Ludwig-Maximilians Univ. München, Munich, Germany, 186 pp.Google Scholar
  34. Neukum, G., and Wise, D.U.:1976, 'Mars-A Standard Crater Curve and Possible new Time Scale', Science 194, 1381-1387.Google Scholar
  35. Neukum, G., and Hiller, K.:1981, 'Martian Ages', J. Geophys. Res. 86, 3097-3121.Google Scholar
  36. Neukum, G., and Ivanov, B.A.:1994, 'Crater Size Distributions and Impact Probabilities on Earth from Lunar, Terrestrial-Planet, and Asteroid Cratering Data', in T. Gehrels (ed.), Hazards due to Comets and Asteroids, Univ. Arizona Press, Tucson, pp. 359-416.Google Scholar
  37. Neukum, G., König, B., Storzer, D., and Fechtig, H.:1975, 'Chronology of Lunar Cratering', Proc. 6th Lunar Planet. Sci. Conf., 598 (abstract).Google Scholar
  38. Neukum, G., Ivanov, B., and Hartmann, W.K.:2001, 'Cratering Records in the Inner Solar System in Relation to the Lunar Reference System', Space Sci. Rev., this volume.Google Scholar
  39. Nyquist, L.E., Wooden, J., Bansal, B., Wiesmann, H., McKay, G., and Bogard, D.D.:1979, 'Rb-Sr Age of the Shergotty Achondrite and Implications for Metamorphic Resetting of Isochron Ages', Geochim. Cosmochim. Acta 43, 1057-1074.Google Scholar
  40. Nyquist, K., Bogard, D., Shih, C.-Y., Greshake, A., Stöffler, D., and Eugster, O.:2001, 'Ages and Geologic Histories of Martian Meteorites', Space Sci. Rev., this volume.Google Scholar
  41. Öpik, E.J.:1965, 'Mariner IV and Craters on Mars', Irish Astron. J. 7, 92.Google Scholar
  42. Öpik, E.J.:1966, 'The Martian Surface', Science 153, 255.Google Scholar
  43. Papanastassiou, D.A., and Wasserburg, G.J.:1974, 'Rb-Sr Age', Geophys. Res. Lett 1, 23.Google Scholar
  44. Pike, R.J.:1977, 'Apparent Depth/Apparent Diameter Relation for Lunar Craters', Proc. 8th Lunar Sci. Conf. 3, Pergamon Press, New York, USA, pp. 3427-3436.Google Scholar
  45. Plescia, J.B.:1990, 'Recent Flood Lavas in the Elysium Region of Mars', Icarus 88, 465-490.Google Scholar
  46. Sawyer, D.J., McGehee, M.D., Canepa, J., and Moore, C.B.:2000, 'Water Soluble Ions in the Nakhla Martian Metorite', Met. Planet. Sci. 35, 743-747.Google Scholar
  47. Scott, D.H., Tanaka, K.L., Greeley, R., and Guest, J.E.:1987, Geologic Maps of the Western Equatorial, Eastern Equatorial and Polar Regions of Mars, Maps. I-1802-A, B and C, Miscellaneous Investigation Series, 1986-1987, U.S. Geological Survey, Flagstaff.Google Scholar
  48. Shih, C.-Y., Nyquist, L.E., Reese, Y., and Wiesmann, H.:1998, 'The Chronology of the Nakhlite, Lafayette:Rb-Sr and Sm-Nd Isotopic Ages', Proc. 29th Ann. Lunar Planet. Sci. Conf., abstract #1145.Google Scholar
  49. Soderblom, L.A., Condit, C.D., West, R.A., Herman, B.M., and Kreidler, T.J.:1974, 'Martian Planetwide Crater Distributions-Implications for Geologic History and Surface Processes', Icarus 22, 239-263.Google Scholar
  50. Stöffler, D., and Ryder, G.:2001, 'Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System', Space Sci. Rev., this volume.Google Scholar
  51. Strom, R.G., Croft, S., and Barlow, N.:1992, 'The Martian Impact Cratering Record', in H. Kieffer et al. (eds.), Mars, Univ. Arizona Press, Tucson, pp. 383-423.Google Scholar
  52. Swindle, T.D., Treiman, A.H., Lindstrom, D.J., Burkland, M.K., Cohen, B.A., Grier, J.A., Li, B., and Olson, E.K.:2000, 'Noble Gases in Iddingsite from the Lafayette Meteorite:Evidence for Liquid Water on Mars in the last few Hundred Million Years', Met. Planet. Sci. 35, 107-115.Google Scholar
  53. Tanaka, K.L.:1986, 'The Stratigraphy of Mars', Proc. 17th Lunar Planet. Sci. Conf., J. Geophys. Res. 91, suppl., 139-158.Google Scholar
  54. Tanaka, K.L., Isbell, N.K., Scott, D.H., Greeley, R., and Guest, J.E.:1987, 'The Resurfacing History of Mars-A Synthesis of Digitized, Viking-based Geology', Proc. 18th Lunar Planet. Sci. Conf., 1987, Cambridge University Press/LPI, 1988, Cambridge and New York/Houston, TX, USA, pp. 665-678.Google Scholar
  55. Wood, C.A., and Ashwal, L.D.:1981, 'Meteorites from Mars: Prospects, Problems and Implications', Proc. 12th Lunar Planet. Sci. Conf., 1197-1199 (abstract).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • William K. Hartmann
    • 1
  • Gerhard Neukum
    • 2
  1. 1.Planetary Science InstituteTucsonUSA
  2. 2.Deutsches Zentrum für Luft- und RaumfahrtBerlinGermany

Personalised recommendations