Advertisement

Hyperfine Interactions

, Volume 132, Issue 1–4, pp 213–220 | Cite as

Mass Measurements on Short-Lived Nuclides with ISOLTRAP

  • G. Bollen
  • F. Ames
  • G. Audi
  • D. Beck
  • J. Dilling
  • O. Engels
  • S. Henry
  • F. Herfurth
  • A. Kellerbauer
  • H.-J. Kluge
  • A. Kohl
  • E. Lamour
  • D. Lunney
  • R. B. Moore
  • M. Oinonen
  • C. Scheidenberger
  • S. Schwarz
  • G. Sikler
  • J. Szerypo
  • C. Weber
Article

Abstract

Penning trap mass spectrometry has reached a state that allows its application to very short-lived nuclides available from various sources of radioactive beams. Mass values with outstanding accuracy are achieved even far from stability. This paper illustrates the state of the art by summarizing the status of the ISOLTRAP experiment at ISOLDE/CERN. Furthermore, results of mass measurements on unstable rare earth isotopes will be given.

atomic mass nuclear binding energy Penning trap mass spectrometer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Proc. of Nobel Symposium 91 on Trapped Charged Particles and Related Fundamental Physics, Lysekil, Sweden, 1994, Phys. Scripta T59 (1995).Google Scholar
  2. 2.
    Proc. of Internat. Conf. on Trapped Charged Particles and Fundamental Physics, Asilomar, CA, USA, 1998, AIP Conf. Proc. 457, Amer. Phys. Soc., 1999, p. 111.Google Scholar
  3. 3.
    Bradley, M. P. et al., Phys. Rev. Lett. 83 (1999), 4510.CrossRefADSGoogle Scholar
  4. 4.
    Carlberg, C., Phys. Rev. Lett. 83 (1999), 4506.CrossRefADSGoogle Scholar
  5. 6.
    Bollen, G. et al., Nucl. Instrum. Methods A 368 (1996), 675.CrossRefADSGoogle Scholar
  6. 7.
    Bollen, G. et al., Hyp. Interact. 38 (1987), 793.CrossRefGoogle Scholar
  7. 8.
    Kluge, H.-J., Phys. Scripta T22 (1988), 85.ADSGoogle Scholar
  8. 9.
    Stolzenberg, H. et al., Phys. Rev. Lett. 65 (1990), 3104.CrossRefADSGoogle Scholar
  9. 10.
    Bollen, G. et al., J. Mod. Opt. 39 (1992), 257.ADSGoogle Scholar
  10. 11.
    Otto, T. et al., Nuclear Phys. A 567 (1994), 281.MathSciNetCrossRefADSGoogle Scholar
  11. 12.
    Beck, D. et al., Nuclear Phys. A 626 (1997), 343c.CrossRefADSGoogle Scholar
  12. 13.
    Ames, F. et al., Nuclear Phys. A 651 (1999), 3.CrossRefADSGoogle Scholar
  13. 14.
    Beck, D. et al., European Phys. J. A 8 (2000), 307.CrossRefADSGoogle Scholar
  14. 15.
    Schwarz, S. et al., in preparation for Phys. Lett. B (2000).Google Scholar
  15. 16.
    Dilling, J. et al., in preparation for European Phys. J. A (2000).Google Scholar
  16. 17.
    Herfurth, F. et al., submitted to Phys. Rev. Lett. (2000).Google Scholar
  17. 18.
    Savard, G. et al., this issue, p. 223.Google Scholar
  18. 19.
    Dilling, J. et al., Hyp. Interact. 127 (2000), 491.CrossRefGoogle Scholar
  19. 20.
    Szerypo, J. et al., In: Proc. of Radiocative Nuclear Beams 5, Divonne, France, 1999, in press.Google Scholar
  20. 21.
    Dilling, J. et al., this issue, p. 331, p. 495.Google Scholar
  21. 22.
    Herfurth, F. et al., this issue, p. 309.Google Scholar
  22. 23.
    Schwarz, S. et al., this issue, p. 337.Google Scholar
  23. 24.
    Kellerbauer, A. et al., this issue, p. 511.Google Scholar
  24. 25.
    Raimbault-Hartmann, H. et al., Nucl. Instrum. Methods B 126 (1997), 374.CrossRefGoogle Scholar
  25. 26.
    Herfurth, F. et al., submitted to Nucl. Instrum. Methods 2000, Preprint CERN-EP/2000–142.Google Scholar
  26. 27.
    Becker, St. et al., Internat. J. Mass Spectrom. Ion Proc.99 (1990), 53.CrossRefGoogle Scholar
  27. 28.
    Bollen, G. et al., J. Appl. Phys. 68, (1990), 4355.CrossRefADSGoogle Scholar
  28. 29.
    Bollen, G. et al., Phys. Rev. C 46 (1992), R2140.CrossRefADSGoogle Scholar
  29. 30.
    Brown, L. S. and Gabrielse, G., Rev. Modern Phys. 58 (1986), 233.CrossRefADSGoogle Scholar
  30. 31.
    Garcia-Ramos, J. E. et al., submitted to Nuclear Phys. A (2000).Google Scholar
  31. 32.
    Britz, J., Pape, A. and Antony, M. S., At. Data Nucl. Data Tables 69 (1998), 125.CrossRefADSGoogle Scholar
  32. 33.
    Kohl, A., PhD thesis, Heidelberg 1999, unpublished.Google Scholar
  33. 34.
    Audi, G. and Wapstra, A. H., Nuclear Phys. A 565D (1993), 1; 595 (1995), 409.CrossRefADSGoogle Scholar
  34. 35.
    Adelberger, E. G. et al., Phys. Rev. Lett. 83 (1999), 3101.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • G. Bollen
    • 1
  • F. Ames
    • 2
  • G. Audi
    • 3
  • D. Beck
    • 4
  • J. Dilling
    • 4
  • O. Engels
    • 5
  • S. Henry
    • 3
  • F. Herfurth
    • 4
  • A. Kellerbauer
    • 4
  • H.-J. Kluge
    • 4
  • A. Kohl
    • 4
  • E. Lamour
    • 4
  • D. Lunney
    • 3
  • R. B. Moore
    • 5
  • M. Oinonen
    • 6
  • C. Scheidenberger
    • 4
  • S. Schwarz
    • 7
  • G. Sikler
    • 4
  • J. Szerypo
    • 8
  • C. Weber
    • 4
  1. 1.National Superconducting Cyclotron LaboratoryMichigan State UniversityEast LansingUSA
  2. 2.Institut für PhysikUniversität MainzGermany
  3. 3.CSNSM-IN2P3-CNRSUniversité Paris-SudOrsayFrance
  4. 4.GSIDarmstadtGermany
  5. 5.LMUMunichGermany
  6. 6.EP DivisionCERNGenevaSwitzerland
  7. 7.National Superconducting Cyclotron LaboratoryMichigan State UniversityEast LansingUSA
  8. 8.JYFLJyväskyläFinland

Personalised recommendations