Advertisement

Space Science Reviews

, Volume 96, Issue 1–4, pp 9–54 | Cite as

Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System

  • D. Stöffler
  • G. Ryder
Article

Abstract

The absolute ages of cratered surfaces in the inner solar system, including Mars, are derived by extrapolation from the impact flux curve for the Moon which has been calibrated on the basis of absolute ages of lunar samples. We reevaluate the lunar flux curve using isotope ages of lunar samples and the latest views on the lunar stratigraphy and the principles of relative and absolute age dating of geologic surface units of the Moon. The geological setting of the Apollo and Luna landing areas are described as far as they are relevant for this reevaluation. We derive the following best estimates for the ages of the multi-ring basins and their related ejecta blankets and present alternative ages for the basin events (in parentheses): 3.92 ± 0.03 Gyr (or 3.85 ± 0.05 Gyr) for Nectaris, 3.89 ± 0.02 Gyr (or 3.84 ± 0.04 Gyr) for Crisium, 3.89 ± 0.01 Gyr (or 3.87 ± 0.03 Gyr) for Serenitatis, and 3.85 ± 0.02 Gyr (or 3.77 ± 0.02 Gyr) for Imbrium. Our best estimates for the ages of the mare landing areas are: 3.80 ± 0.02 Gyr for Apollo 11 (old surface), 3.75 ± 0.01 Gyr for Apollo 17, 3.58 ± 0.01 Gyr for Apollo 11 (young surface), 3.41 ± 0.04 Gyr for Luna 16, 3.30 ± 0.02 Gyr for Apollo 15, 3.22 ± 0.02 Gyr for Luna 24, and 3.15 ± 0.04 Gyr for Apollo 12. The ages of Eratosthenian and Copernican craters remain: ∼ 2.1 (?) Gyr (Autolycus), 800 ± 15 Myr (Copernicus), 109 ± 4 Myr (Tycho), 50.3 ± 0.8 (North Ray crater, Apollo 16), and 25.1 ± 1.2 (Cone crater, Apollo 14). When plotted against the crater densities of the relevant lunar surface units, these data result in a revised lunar impact flux curve which differs from the previously used flux curve in the following respects: (1) The ages of the stratigraphically most critical impact basins are notably younger, (2) the uncertainty of the calibration curve is decreased, especially in the age range from about 4.0 to 3.0 Gyr, (3) any curve for ages older than 3.95 Gyr (upper age limit of the Nectaris ejecta blanket) is abandoned because crater frequencies measured on such surface formations cannot be correlated with absolute ages obtained on lunar samples. Therefore, the impact flux curve for this pre-Nectarian time remains unknown. The new calibration curve for lunar crater retention ages less than about 3.9 Gyr provides an updated standard reference for the inner solar system bodies including Mars.

Keywords

Lunar Surface Lunar Sample Solar System Body Flux Curve Lunar Crater 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, E.C., Jr., Bates, A., Coscio, M.R., Jr., Dragon, J.C., Murthy, V.R., Pepin, R.O., and Venkatesan, T.R.:1976, 'K/Ar Ddating of Lunar Soils II', Proc. 7th Lunar Sci. Conf. 7, 625-648.Google Scholar
  2. Arvidson, R., Drozd, R.J., Guinness, E., Hohenberg, C.M., Morgan, C.J., Morrison, R.H., and Oberbeck, V.R.:1976, 'Cosmic Ray Exposure Ages of Apollo 17 Samples and the Age of Tycho', Proc. 7th Lunar Sci. Conf., 2817-2832.Google Scholar
  3. Baldwin, R.B.:1949, 'The Face of the Moon', University of Chicago Press, Chicago, p. 239.Google Scholar
  4. Barsukov, V.L.:1977, 'Preliminary Data for the Regolith Core Brought to Earth by Automatic Lunar Station Luna 24', Proc. 8th Lunar Sci. Conf., 3303-3318.Google Scholar
  5. Beaty, D.W., and Albee, A.L.:1978, 'Comparative Petrology and Possible Genetic Relations Among the Apollo 11 Basalts', Proc. 9th Lunar Sci. Conf., 359-463.Google Scholar
  6. Bernatowicz, T.J., Hohenberg, C.M., Hudson, B., Kennedy, B.M., and Podosek, F.A.:1978, 'Argon Ages for Lunar Breccias 14064 and 15405', Proc. 9th Lunar Sci. Conf., 905-919.Google Scholar
  7. Binder, A.:1998, 'Lunar Prospector: Overview', Science 281, 1475-1476.Google Scholar
  8. Blewett, D.T., Lucey, P.G., Hawke, B.R., and Jolliff, B.L.:1997, 'Clementine Images of the Lunar Sample-return Stations:Refinement of FeO and TiO2 Mapping Techniques', J. Geophys. Res. 102, 16,319-16,325.Google Scholar
  9. Bogard, D.D., Garrison, D.H., Shih, C.-Y., and Nyquist, L.E.:1994, '40Ar-39Ar Dating of Two Lunar Granites:The Age of Copernicus', Geochim. Cosmochim. Acta 58, 3093-3100.Google Scholar
  10. Boyce, J.M., and Dial, A.L., Jr.:1975, 'Relative Ages of Flow Units in Mare Imbrium and Sinus Iridum', Proc. 6th Lunar Sci. Conf., 2585-2595.Google Scholar
  11. Burgess, R., and Turner, G.:1998, 'Laser 40Ar-39Ar Age Determinations of Luna 24 Mare Basalts', Met. Plan. Sci. 33, 921-935.Google Scholar
  12. Butler, P., and Morrison, D.A.:1977, 'Geology of the Luna 24 Landing Site', Proc. 8th Lunar Sci. Conf., 3281-3301.Google Scholar
  13. Cadogan, P.H., and Turner, G.:1977, '40Ar-39Ar Dating of Luna 16 and Luna 20 Samples', Phil. ]Trans. Royal Soc. London 284, 167-177.Google Scholar
  14. Cameron, A.G.W.:1984, 'The Impact Theory for Origin of the Moon', in W.K. Hartmann, R.J. Phillips, and G.J. Taylor (eds.), Origin of the Moon, LPI, Houston, pp. 609-616.Google Scholar
  15. Cameron, A.G.W., and Ward, W.R.:1976, 'The Origin of the Moon', Lunar Science VII, Lunar Science Institute, Houston, 120-122.Google Scholar
  16. Canup, R.M., and Agnor, C.B.:2000, 'Accretion of the Terrestrial Planets and the Earth-Moon System', in R.M. Righter and R. Canup (eds.), Origin of the Earth and Moon, Univ. Arizona Press, Tucson, pp. 113-129.Google Scholar
  17. Carlson, R.W., and Lugmair, G.W.:1979, 'Sm-Nd Constraints on Early Lunar Differentiation and the Evolution of KREEP', Earth Planet. Sci. Lett. 45, 123-132.Google Scholar
  18. Clayton, R.N., and Mayeda, T.K.:1975, 'Genetic Relations Between the Moon and Meteorites', Proc. 6th Lunar Sci. Conf., 1761-1769.Google Scholar
  19. Cohen, B.A., Swindle, T.D., and Kring, D.A.:2000, 'Support for the Lunar Cataclysm Hypothesis from Lunar Meteorite Impact Melt Ages', Science 290, 1754-1756.Google Scholar
  20. Culler, T.S., Becker, T.A., Muller, R.A., and Renne, P.R.:2000, 'Lunar Impact History from 40Ar/39Ar Dating of Glass Spherules', Science 287, 1785-1788.Google Scholar
  21. Dalrymple, G.B.:1991, The Age of the Earth, Stanford University Press, 474 pp.Google Scholar
  22. Dalrymple, G.B., and Ryder, G.:1993, '40Ar/39Ar Ages of Apollo 15 Impact Melt Rocks by Laser Step Heating and Their Bearing on the History of Lunar Basin Formation', J. Geophys. Res. 98, 13,085-13,095.Google Scholar
  23. Dalrymple, G.B., and Ryder, G.:1996, '40Ar/39Ar Age Spectra of Apollo 17 Highlands Breccia Samples by Laser Step-heating and the Age of the Serenitatis Basin', J. Geophys. Res. 101, 26,069-26,084.Google Scholar
  24. De Hon, R.A., and Waskom, J.D.:1976, 'Geologic Structure of the Eastern Mare Basins', Proc. 7th Lunar Sci. Conf., 2729-2746.Google Scholar
  25. Deutsch, A., and Stöffler, D.:1987, 'Rb-Sr Analyses of Apollo 16 Melt Rocks and a New Age Estimate for the Imbrium Basin:Lunar Basin Chronology and the Early Heavy Bombardment of the Moon', Geochim. Cosmochim. Acta 51, 1951-1964.Google Scholar
  26. Drozd, R.J., Hohenberg, C.M., Morgan, C.J., and Ralston, C.E.: 1974, 'Cosmic-ray Exposure History at the Apollo 16 and Other Lunar Sites:Lunar Surface Dynamics', Geochim. Cosmochim. Acta 38, 1625-1642.Google Scholar
  27. Drozd, R.J., Hohenberg, C.M., Morgan, C.J., Podosek, F.A., Wroge, M.L.:1977, 'Cosmic-ray Exposure History at Taurus-Littrow', Proc. Lunar Sci. Conf., 3027-3043.Google Scholar
  28. Eberhardt, P., Geiss, J., Grögler, N., and Stettler, A.:1973, 'How Old is the Crater Copernicus?', The Moon 8, 104-114.Google Scholar
  29. Eugster, O.:1999, 'Chronology of Dimict Breccias and the Age of South Ray Crater at the Apollo 16 Site', Met. Planet. Sci. 34, 385-391.Google Scholar
  30. Faure, G., 1986: Principles of Isotope Geology, (2nd. Ed.) Wiley, New York.Google Scholar
  31. Florensky, C.P., Basilevsky, A.T., Ivanov, A.V., Pronin, A.A., and Rode, O.D.:1977, 'Luna 24: Geological Setting of Landing Site and Characteristics of Sample Core (Preliminary Data)', Proc. 8th Lunar Sci. Conf., 3257-3279.Google Scholar
  32. Freeman, V.F.:1981, 'Regolith of the Apollo 16 Site', in G.E. Ulrich, C.A. Hodges, and W.R. Muehlberger (eds.), Geology of the Apollo 16 Area, Central Lunar Highlands, USGS Professional Paper 1048, 147-159.Google Scholar
  33. Geiss, J., Eberhardt, P., Grögler, N., Guggisberg, S., Maurer, P., and Stettler, A.:1977, 'Absolute Time Scale of Lunar Mare Formation and Filling', The Moon-a new Appraisal from Space Missions and Laboratory Analyses, Royal Society of London Philosophical Transactions 285, 151-158.Google Scholar
  34. Gilbert, G. K.:1893, 'The Moon's Face, a Study of the Origin of its Features', Philosophical Society of Washington Bulletin 12, 241-292.Google Scholar
  35. Graham, A.L., and Hutchison, R.:1980, 'Mineralogy and Petrology of Fragments from the Luna 24 Core', Phil. Trans. Royal Soc. London A297, 15-22.Google Scholar
  36. Grieve, R.A.F., and Shoemaker, E.M.:1994, 'The Record of Past Impacts on Earth', in T. Gehrels (ed.), Hazards Due to Comets and Asteroids Univ. Arizona Press, Tuscon, pp. 417-462.Google Scholar
  37. Grieve, R.A.F., McKay G.A., and Weill, D.F.:1972, 'Microprobe Studies of Three Luna 16 Basalt Fragments', Earth Planet. Sci. Lett. 13, 233-242.Google Scholar
  38. Grolier, M.J.:1970, 'Geologic Map of Apollo Site 2 (Apollo 11); Part of Sabine D Region, Southwestern Mare Tranquillitatis', USGS Map I-619 [ORB II-6 (25)], scale 1:25,000; 'Geologic Map of the Sabine Region on the Moon, Lunar Orbiter Site II P-6, Southwestern Mare Tranquillitatis, Including Landing Site 2', USGS Map I-618 [ORB II-6 (100)], scale 1:100,000.Google Scholar
  39. Grossman, J.N.:2000, 'The Meteoritical Bulletin, No. 84', Met. Planet. Sci. 35, A199-A225.Google Scholar
  40. Hackmann, R.J.:1966, 'Geologic Map of the Montes Apenninus Quadrangle of the Moon', USGS Map I-463 (LAC-41), scale 1:1,000,000.Google Scholar
  41. Halliday, A.N.:2000, 'Terrestrial Accretion Rates and the Origin of the Moon', Earth Planet. Sci. Lett. 176, 17-30.Google Scholar
  42. Hartmann, W.K.:1970, 'Lunar Cratering Chronology', Icarus 13, 299-301.Google Scholar
  43. Hartmann, W.K.:1972, 'Paleocratering of the Moon: Review of Post-Apollo Data', Astrophys. Space Sci. 17, 48-64.Google Scholar
  44. Hartmann, W.K.:1973, Ancient Lunar Mega-Regolith and Subsurface Structure, Icarus 18, 634.Google Scholar
  45. Hartmann, W.K., and Wood, C.A.:1971, 'Moon: Origin and Evolution of Multi-ring Basins', Moon 3, 3.Google Scholar
  46. Hartmann, W.K., and Davis, D.R.:1975, 'Satellite-sized Planetesimals and Lunar Origin', Icarus 24, 504.Google Scholar
  47. Hartmann, W.K., et al.:1981, 'Chronology of Planetary Volcanism by Comparative Studies of Planetary Cratering', Basaltic Volcanism on the Terrestrial Planets, Pergamon Press, New York, pp. 1049-1128.Google Scholar
  48. Hartmann, W.K., Phillips, R.J., and Taylor, G.J.:1984, Origin of the Moon, LPI, Houston, pp. 781.Google Scholar
  49. Hartmann, W.K., Ryder, G., Dones, L., and Grinspoon, D.H.:2000, 'The Time-dependent Intense Bombardment of the Primordial Earth-Moon System', in R.M. Righter and R. Canup (eds.), Origin of the Earth and Moon, Univ. Arizona Press, Tucson, pp. 493-512.Google Scholar
  50. Hawke, B.R., and Head, J.W.:1978, 'Lunar KREEP Volcanism: Geologic Evidence for History and Mode of Emplacement', Proc. 9th Lunar Planet. Sci. Conf., 3285-3309.Google Scholar
  51. Head, J.W., Adams, J.B., McCord, T.B., Pieters, C.M., and Zisk, S.H.:1978, 'Regional Stratigraphy and Geologic History of Mare Crisium', in R.B. Merrill and J.J. Papike (eds.), Mare Crisium: The View from Luna 24, Pergamon Press, New York, pp. 43-74.Google Scholar
  52. Heiken, G., and McEwen, M.C.:1972, 'The Geologic Setting of the Luna 20 Site', Earth Planet. Sci. Lett. 17, 3-6.Google Scholar
  53. Heiken, G., Vaniman, D., and French, B.M. (eds.):1991, The Lunar Sourcebook. A User's Guide to the Moon, LPI and Cambridge Univ. Press, New York, pp. 736.Google Scholar
  54. Hörz, F.:2000, 'Time-variable Cratering Rates?', Science 288, 2095a.Google Scholar
  55. Huneke, J.C., Podosek, F.A., and Wasserburg, G.J.:1972, 'Gas Retention and Cosmic-ray Exposure Ages of a Basalt Fragment from Mare Fecunditatis', Earth Planet. Sci. Lett. 13, 375-383.Google Scholar
  56. James, O.B.:1980, 'Rocks of the Early Lunar Crust', LPSCP 11, 365-393.Google Scholar
  57. James, O.B.:1981, 'Petrologic and Age Relations of Apollo 16 Rocks: Implications for the Subsurface Geology and Age of the Nectaris Basin', Proc. 12th Lunar Planet. Sci. Conf., 209-233.Google Scholar
  58. Jessberger, E.K.:1983, '40Ar-39Ar Dating of North Ray Crater Ejecta. I.', Proc. 14th Lunar Planet. Sci. Conf., 349-350.Google Scholar
  59. Jessberger, E.K., Huncke, J.C., Podosek, F.A., and Wasserburg, G.J.:1974, 'High Resolution Argon Analysis of Neutron-irradiated Apollo 16 Rocks and Separated Minerals', Proc. 5th Lunar Sci. Conf., 1419-1449.Google Scholar
  60. Jessberger, E.K., Kirsten, T., and Staudacher, T.:1977, 'One Rock and Many Ages-Further Data on Consortium Breccia 73215', Proc. 8th Lunar Sci. Conf., 2567-2580.Google Scholar
  61. Jessberger, E.K., Staudacher, T., Dominik, B., and Kirsten, T.:1978, 'Argon-argon Ages of Aphanitic Samples from Consortium Breccia 73255', Proc. 9th Lunar Planet. Sci. Conf., 841-854.Google Scholar
  62. Jolliff, B.L., Gillis, J.J., Korotev, R.L., and Haskin, L.A.:2000a, 'On the Origin of Nonmare Materials at the Apollo 12 Landing Site', 31st Lunar Planet. Sci. Conf., abstract #1671.Google Scholar
  63. Jolliff, B.L., Gillis, J.J., Haskin, L.A., Korotev, R.L., and Wieczorek, M.A.:2000b, 'Major Lunar Crustal Terranes:Surf ace Expressions and Crust-mantle Origins', J. Geophys. Res. 105, 4197-4216.Google Scholar
  64. Keil, K., Kurat, G., Prinz, M., and Green, J.A.:1972, 'Lithic Fragments, Glasses and Chondrules from Luna 16 Fines', Earth Planet. Sci. Lett. 13, 243-256.Google Scholar
  65. Koblitz, J.:1999, 'MetBase 4.0', Meteorite Data Retrieval Software, Fischerhude.Google Scholar
  66. Korotev, R.L.:1987, 'Mixing Levels, the Apennine Front Soil Component, and Compositional Trends in the Apollo 15 Soils', Proc. 17th Lunar Planet. Sci. Conf., E411-E431.Google Scholar
  67. Korotev, R.L., Jolliff, B.L., and Zeigler, R.A.:2000, 'The KREEP Components of the Apollo 12 Regolith', 31st Lunar Planet. Sci. Conf., abstract #1363.Google Scholar
  68. Kurat, G., Kracher, A., Keil, K., Warner, R., and Prinz, M.:1976, 'Composition and Origin of Luna 16 Aluminous Mare Basalts', Proc. 7th Lunar Sci. Conf., 1301-1321.Google Scholar
  69. Lee, D.C., Halliday, A.N., Snyder, G.A., and Taylor, L.A.:1997, 'Age and Origin of the Moon', Science 278, 1098-1103.Google Scholar
  70. Lucchitta, B.K.:1977, 'Crater Clusters and Light Mantle at the Apollo 17 Site: A Result of Secondary Impact from Tycho', Icarus 30, 80-96.Google Scholar
  71. Lucchitta, B.K., and Sanchez, A.G.:1975, 'Crater Studies in the Apollo 17 Region', Proc. 6th Lunar Sci. Conf., 2427-2441.Google Scholar
  72. Ma, M.S., Schmitt, R.A., Nielsen, R.L., Taylor, G.J., Warner, R.D., and Keil, K.:1979, 'Petrogenesis of Luna 16 Aluminous Mare Basalts', Geophys. Res. Lett. 6, 909-912.Google Scholar
  73. Maurer, P., Eberhardt, P., Geiss, J., Grögler, N., Stettler, A., Brown, G.M., Peckett, A., and Krähenbühl, U.:1978, 'Pre-Imbrian Craters and Basins: Ages, Compositions and Excavation Depths of Apollo 16 Breccias', Geochim. Cosmochim. Acta 42, 1687-1720.Google Scholar
  74. Maxwell, T.A., and El-Baz F., 1978:'The Nature of Rays and Sources of Highland Material in Mare Crisium', in R.B. Merrill and J.J. Papike (eds.), Mare Crisium: The View from Luna 24, Pergamon, New York, 89-103.Google Scholar
  75. McCauley, J.F., and Scott, D.H.:1972, 'The Geologic Setting of the Luna 16 Landing Site', Earth Planet. Sci. Lett. 13, 225-232.Google Scholar
  76. Melosh, H.J.:1989, Impact Cratering: A Geologic Process, Oxford Univ. Press, New York, p. 245.Google Scholar
  77. Meyer, C., Jr., Brett, R., Hubbard, N.J., Morrison, D.A., McKay, D.S., Aitken, F.K., Takeda, H., and Schonfeld, E.:1971, 'Mineralogy, Chemistry and Origin of the KREEP Component in Soil Samples from the Ocean of Storms', Proc. 2nd Lunar Sci. Conf., 393-411.Google Scholar
  78. Moore, H.J., Boyce, J.M., and Hahn, D.A.:1980, 'Small Impact Craters in the Lunar Regolith-Their Morphologies, Relative Ages, and Rates of Formation', The Moon and the Planets 23, 231-252.Google Scholar
  79. Muehlberger, W.R., Hörz, F., Sevier, J.R., and Ulrich, G.E.:1980, 'Mission Objectives for Geological Exploration of the Apollo 16 Landing Site', in J.J. Papike and R.B. Merrill (eds.), Proc. Conf. on the Lunar Highland Crust, Houston, Texas, 1979, Pergamon Press, New York, pp. 1-49.Google Scholar
  80. Muller, R.A., Becker, T.A., Culler, T.S., Karner, D.B., and Renne, P:R.: 2000, 'Time-variable Cratering Rates?', Science 288, 2095a.Google Scholar
  81. Neal, C.R., Taylor, L.A., Hughes, S.S., and Schmitt, R.A.:1990, 'The Significance of Fractional Crystallization in the Petrogenesis of Apollo 17 Type A and B High-Ti Basalts', Geochim. Cosmochim. Acta 54, 1817-1833.Google Scholar
  82. Neal, C.R., Hacker, M.D., Snyder, G.A., Taylor, L.A., Liu, Y.-G., and Schmitt, R.A., 1994:'Basalt Generation at the Apollo 12 Site I', Meteoritics, 29, 334-348.Google Scholar
  83. Neukum, G.:1977, 'Different Ages of Lunar Light Plains', The Moon 17, 383-393.Google Scholar
  84. Neukum, G.:1983, Meteoritenbombardement und Datierung planetarer Oberflächen, Habilitation Dissertation for Faculty Membership, Ludwig-Maximilians-University Munich. 186 pp.Google Scholar
  85. Neukum, G., and König, B.:1976, 'Dating of Individual Lunar Craters', Proc. 7th Lunar Sci. Conf., 2867-2881.Google Scholar
  86. Neukum, G., and Wise, D.U.:1976, 'Mars: A Standard Crater Curve and Possible New Time Scale', Science 194, 1381-1387.Google Scholar
  87. Neukum, G., and Ivanov, B. A.:1994, 'Crater Size Distributions and Impact Probabilities on Earth from Lunar, Terrestrial-planet, and Asteroid Cratering Data', in T. Gehrels (ed.), Hazards due to Comets and Asteroids, Univ. of Arizona Press, Tucson and London, pp. 359-416.Google Scholar
  88. Neukum, G., König, B., Fechtig, H., and Storzer, D.:1975, 'Cratering in the Earth-moon System: Consequences for Age Determination by Crater Counting', Proc. 6th Lunar Sci. Conf., 2597-2620.Google Scholar
  89. Neukum, G., Ivanov, B., and Hartmann, W.K.:2001, 'Cratering Records in the Inner Solar System in Relation to the Lunar Reference System', Space Sci. Rev., this volume.Google Scholar
  90. Nozette, S., and the Clementine team:1994, 'The Clementine Mission to the Moon: Scientific Overview', Science 266, 1835-1839.Google Scholar
  91. Nyquist, L.E., and Shih, C.-Y.:1992, 'The Isotopic Record of Lunar Volcanism', Geochim. Cosmochim. Acta 56, 2,213-2,234.Google Scholar
  92. Nyquist, L.E., Bogard, D.D., Shih, C.-Y., Greshake, A., Stöffler, D., and Eugster, O.:2001a, 'Ages and Geologic Histories of Martian Meteorites', Space Sci. Rev., this volume.Google Scholar
  93. Nyquist, L.E., Bogard, D.D., and Shih, C.-Y.:2001b, 'Radiometric Chronology of Moon and Mars', The Century of Space Science, Kluwer Publishers, in press.Google Scholar
  94. Oberbeck, V.R.:1975, 'The Role of Ballistic Erosion and Sedimentation in Lunar Stratigraphy', Reviews of Geophysics and Space Physics 13, 337-362.Google Scholar
  95. Papanastassiou, D.A., and Wasserburg, G.J.:1972, 'The Rb-Sr Age of a Crystalline Rock from Apollo 16', Earth Planet. Sci. Lett. 16, 289-298.Google Scholar
  96. Papike, J.J., Ryder, G., and Shearer, C.K.:1998, 'Lunar Samples', in P.H. Ribbe (ed.), Rev. Miner. 36, Planetary Material (Chapt. 5), Min. Soc. Amer., Washington DC, pp. 5-1-5-234.Google Scholar
  97. Podosek, F.A., Huneke, J.C., Gancarz, A.J., and Wasserburg, G.J.:1973, 'The Age and Petrography of Two Luna 20 Fragments and Inferences for Widespread Lunar Metamorphism', Geochim. Cosmochim. Acta 37, 887-904.Google Scholar
  98. Reid, A.M., Ridley, W.I., Harmon, R.S., Warner, J.L., Brett, R., Jakes, P., and Brown, R.W.:1972, 'Highly Aluminous Glasses in Lunar Soils and the Nature of the Lunar Highlands', Geochim. Cosmochim. Acta 36, 903-912.Google Scholar
  99. Rhodes, J.M., Blanchard, D.P., Dungan, M.A., Brannon, J.C., and Rodgers, K.V.:1977, 'Chemistry of Apollo 12 Mare Basalts:Magma Types and Fractionation Processes', Proc. 8th Lunar Sci. Conf., 1305-1338.Google Scholar
  100. Ryder, G.:1985, 'Catalog of Apollo 15 Rocks', JSC Publ. No. 20787, Curatorial Branch Publ. 72, NASA Johnson Space Center, Houston, p. 1296.Google Scholar
  101. Ryder, G.:1987, 'Petrographic Evidence for Nonlinear Cooling Rates and a Volcanic Origin for Apollo 15 KREEP Basalts', Proc. 17th Lunar Planet. Sci. Conf., J. Geophys. Res. 92, 331-339.Google Scholar
  102. Ryder, G.:1990a, 'Lunar Samples, Lunar Accretion, and the Early Bombardment of the Moon', Eos, Trans. Amer. Geophys. Union 71, 313-333.Google Scholar
  103. Ryder, G.:1990b, 'A Distinct Variant of High-titanium Mare Basalt from the Van Serg Core, Apollo 17 Landing Site', Meteoritics 25, 249-258.Google Scholar
  104. Ryder, G.:1994, 'Coincidence in Time of the Imbrium Basin Impact and the Apollo 15 Volcanic Flows:The Case for Impact-induced Melting', in B.O. Dressler, R.A.F. Grieve, and V.L. Sharpton (eds.), Large Meteorite Impacts and Planetary Evolution, Geol. Soc. Amer. 293, 11-18.Google Scholar
  105. Ryder, G.:2000, 'Glass Beads Tell a Tale of Lunar Bombardment', Science 287, 1768-1769.Google Scholar
  106. Ryder, G., and Marvin, U.B.:1978, 'On the Origin of Luna 24 Basalts and Soils', in R.B. Merrill and J.J. Papike (eds.), Mare Crisium: The View from Luna 24, Pergamon, New York, 339-355.Google Scholar
  107. Ryder, G., and Spudis, P.D.: 1987, 'Chemical Composition and Origin of Apollo 15 Impact Melts', J. Geophys. Res. 92, 432-446.Google Scholar
  108. Ryder, G., and Schuryatz, B.C.:2001, 'The Chemical Variation of the Large Apollo 15 Olivinenormative Mare Basalt Rock Samples', J. Geophys. Res., in press.Google Scholar
  109. Ryder, G., Bogard, D.D., and Garrison, D.:1991, 'Probable age of Autolycus and Calibration of Lunar Stratigraphy', Geology 19, 143-146.Google Scholar
  110. Shearer, C.K., and Papike, J.J.:1999, 'Invited Review: Magmatic Evolution of the Moon', American Mineralogy 84, 1469-1494.Google Scholar
  111. Schultz, P.H., and Merrill, R.B. (eds.):1981, Multi-Ring-Basins, Proc. 12th Lunar Planet. Sci., Pergamon Press, New York, p. 295.Google Scholar
  112. Shoemaker, E.M., and Hackman, R.J.:1962, 'Stratigraphic Basis for a Lunar Time Scale', in Z. Kopal and Z.K. Mikhailov (eds.), The Moon, Academic Press, London, pp. 289-300.Google Scholar
  113. Shoemaker, E.M., Weissman, P.R., and Shoemaker, C.S.:1994, 'The Flux of Periodic Comets Near Earth', in T. Gehrels (ed.), Hazards Due to Comets and Asteroids Univ. Arizona Press, Tuscon, pp. 313-336.Google Scholar
  114. Silver, L.T.:1971, 'U-Th-Pb Isotope Systems in Apollo 11 and 12 Regolithic Materials and a Possible Age for the Copernican Impact', Eos, Trans. Amer. Geophys. Union 52, p. 534.Google Scholar
  115. Snyder, G.A., Borg, L.E., Nyquist, L.E., and Taylor, L.A.:2000, 'Chronology and Isotopic Constraints on Lunar Evolution', The Origin of the Earth and the Moon, Univ. Arizona Press, Tucson, pp. 361-395.Google Scholar
  116. Soderblom, L.A., and Lebofsky, L.A.:1972, 'Technique for Rapid Determination of Relative Ages of Lunar Areas from Orbital Photography', J. Geophys. Res. 77, 279-296.Google Scholar
  117. Spangler, R.R., Warasila, R., and Delano, L.W.:1984, '40Ar-39Ar Ages for the Apollo 15 Green and Yellow Volcanic Glasses', Proc. 14th Lunar Planet. Sci. Conf., B487-B497.Google Scholar
  118. Spudis, P.D.:1978, 'Composition and Origin of the Apennine Bench Formation', Proc. 9th Lunar Planet. Sci. Conf., 3379-3394.Google Scholar
  119. Spudis, P.D.:1993, The Geology of Multi-ring Impact Basins: The Moon and Other Planets, Cambridge University Press, Cambridge, pp. 263.Google Scholar
  120. Spudis, P.D., and Ryder, G.:1981, 'Apollo 17 Impact Melts and Their Relation to the Serenitatis Basin, Multi-ring Basins', Proc. 12th Lunar Planet. Sci. Conf., 133-148.Google Scholar
  121. Stadermann, F.J., Heusser, E., Jessberger, E.K., Lingner, S., and Stöffler, D.:1991, 'The Case for a Younger Imbrium Basin:New 40Ar-39Ar Ages of Apollo 14 Rocks', Geochim. Cosmochim. Acta 55, 2339-2349.Google Scholar
  122. Staid, M.I., Pieters, C.M., and Head, J.W., III:1996, 'Mare Tranquillitatis: Basalt Emplacement History and Relation to Lunar Samples', J. Geophys. Res. 101, 23,213-23,228.Google Scholar
  123. Staudacher, T., Jessberger, E.K., Flohs, I., and Kirsten, T.:1979, '40Ar-39Ar Age Systematics of Consortium Breccia 73255', Proc. 10th Lunar Planet. Sci. Conf., 745-762.Google Scholar
  124. Steiger and Jäger:1977, Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo-and Cosmochronology', Earth Planet. Sci. Lett. 36, 359-362.Google Scholar
  125. Stöffler, D., Knöll, H.D., Marvin, U.B., Simonds, C.H., and Warren, P.H.:1980, 'Recommended Classification and Nomenclature of Lunar Highland Rocks-a Committee Report', in J.J. Papike and R.B. Merrill (eds.), Proc. Conf. on the Lunar Highlands Crust, Houston, 1979, Pergamon, New York, pp. 51-70.Google Scholar
  126. Stöffler, D., Ostertag, R., Reimold, W.U:, Borchardt, R., Malley, J., and Rehfeldt, A.: 1981, 'Distribution and Provenance of Lunar Highland Rock Types at North Ray Crater, Apollo 16', Proc. 12th Lunar Planet. Sci. Conf., 185-207.Google Scholar
  127. Stöffler, D., et al.:1985, 'Composition and Evolution of the Lunar Crust in the Descartes Highlands, Apollo 16', J. Geophys. Res. 89, 449-506.Google Scholar
  128. Stöffler, D., Bobe, K.D., Jessberger, E.K., Lingner, S., Palme, H., Spettel, B., Stadermann, F., and Wänke, H.:1989, 'Fra Mauro Formation, Apollo 14: IV. Synopsis and Synthesis of Consortium Studies', in G.J. Taylor and P.H. Warren (eds.), Workshop on Moon in Transition: Apollo 14 KREEP, and Evolved Lunar Rocks, LPI Tech. Rpt. 89-03, LPI, Houston, pp. 145-148.Google Scholar
  129. Swann, G.A., Trask, N.J., Hait, M.H., and Sutton, R.L.:1971, 'Geologic Setting of the Apollo 14 Samples', Science 173, 3998, 716-719.Google Scholar
  130. Swindle, T.D., Spudis P.D., Taylor G.J., Korotev, R.L., Nichols R.H., Jr., and Olinger, C.T.:1991, 'Searching for Crisium Basin Ejecta:Chemistry and Ages of Luna 20 Impact Melts', Proc. 21st Lunar Planet. Sci Conf. 21, 167-181.Google Scholar
  131. Taylor, S.R.:1975, Lunar Science: A Post-Apollo View, Pergamon, New York, p. 372.Google Scholar
  132. Taylor, S.R.:1982, Planetary Science: A Lunar Perspective, LPI, Houston, p. 481.Google Scholar
  133. Taylor, L.A., Onorato, P.I.K., Uhlmann, D.R., and Coish, R.A.:1978, 'Subophitic Basalts from Mare Crisium:Cooling Rates', in R.B. Merrill and J.J. Papike (eds.), Mare Crisium: The View from Luna 24, Pergamon, New York, pp. 473-482.Google Scholar
  134. Tera, F., and Wasserburg, G.J.:1976, 'Lunar Ball Games and Other Sports', Lunar Sci. 7, 858-860.Google Scholar
  135. Tera, F., Papanastassiou, D.A., and Wasserburg, G.J.:1974, 'Isotopic Evidence for a Terminal Lunar Cataclysm', Earth Planet. Sci. Lett. 22, 1-21.Google Scholar
  136. Turner, G.:1977, 'Potassium-argon Chronology of the Moon', Phys. Chem. Earth 10, 145-195.Google Scholar
  137. Ulrich, G.E., Hodges, C.A., and Muehlberger, W.R. (eds.):1981, Geology of the Apollo 16 Area, Central Lunar Highlands, USGS Professional Paper 1048, p. 539.Google Scholar
  138. Vinogradov, A.P.:1971, 'Preliminary Data on Lunar Ground Brought to Earth by Automatic Probe “Luna 16”,' Proc. 2nd Lunar Sci. Conf., 1-16.Google Scholar
  139. Vinogradov, A.P.:1973, 'Preliminary Data on Lunar Soil Collected by the Luna 20 Unmanned Spacecraft', Geochim Cosmochim. Acta 37, 721-729.Google Scholar
  140. Wacker, K., Müller, N., and Jessberger, E.K.:1983, '40Ar-39Ar Dating of North Ray Crater Ejecta. II.', Meteoritics 18, 201.Google Scholar
  141. Warner, R.D., Taylor, G.J., Conrad, G.H., Northrup, H.R., Barker, S., Keil, K., Ma, M.S., and Schmitt, R.:1979, 'Apollo 17 High-Ti Mare Basalts: New Bulk Compositional Data, Magma Types, and Petrogenesis', Proc. 10th Lunar Planet. Sci. Conf., 225-247.Google Scholar
  142. Wilhelms, D.E.:1980, 'Stratigraphy of Part of the Lunar Near Side', USGS Professional Paper 1046-A, A1-A71.Google Scholar
  143. Wilhelms, D.E.:1984, 'The Moon', in M. Carr et al. (eds.), The Geology of the Terrestrial Planets, NASA SP 469, 107-205.Google Scholar
  144. Wilhelms, D.E.:1987, 'The Geologic History of the Moon'U.S. Geol. Surv. Prof. Pap. 1348, pp. 302.Google Scholar
  145. Wolfe, E.W., Lucchitta, B.K., Reed, V.S., Ulrich, G.E., and Sanchez, A.G.:1975, 'Geology of the Taurus-Littrow Valley Floor', Proc. 6th Lunar Sci. Conf., 2463-2482.Google Scholar
  146. Wolfe, E.W., Bailey, N.G., Lucchitta, B.K., Muehlberger, W.R., Scott, D.H., Sutton, R.L., and Wilshire, H.G.:1981, 'The Geologic Investigation of the Taurus-Littrow Valley:Apollo 17 Landing Site', USGS Professional Paper 1080, p. 280.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • D. Stöffler
    • 1
  • G. Ryder
    • 2
  1. 1.Institut für Mineralogie, Museum für NaturkundeHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Lunar and Planetary InstituteHoustonUSA

Personalised recommendations