Studia Logica

, Volume 68, Issue 1, pp 3–20 | Cite as

Editorial Introduction

  • Volker Halbach
Editorial Introduction

Abstract

I survey some important semantical and axiomatic theories of self-referential truth. Kripke's fixed-point theory, the revision theory of truth and appraoches involving fuzzy logic are the main examples of semantical theories. I look at axiomatic theories devised by Cantini, Feferman, Freidman and Sheard. Finally some applications of the theory of self-referential truth are considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Antonelli, A., 'A revision-theoretic analysis of the arithmetical hierarchy', Notre Dame Journal of Formal Logic 35:204-218, 1994.Google Scholar
  2. [2]
    Bealer, G., Quality and Concept, Clarendon Press, Oxford, 1982.Google Scholar
  3. [3]
    Belnap, N., and A. Gupta, The Revision Theory of Truth, MIT Press, Cambridge, 1993.Google Scholar
  4. [4]
    Burgess, J., 'The truth is never simple', Journal of Symbolic Logic 51:663-681, 1986.Google Scholar
  5. [5]
    Burgess, J., 'Addendum to “The truth is never simple”', Journal of Symbolic Logic 53:390-392, 1988.Google Scholar
  6. [6]
    Cantini, A., 'Notes on formal theories of truth', Zeitschrift f¨ur mathematische Logik und Grundlagen der Mathematik 35:97-130, 1989.Google Scholar
  7. [7]
    Cantini, A., 'A theory of truth formally equivalent to ID1', Journal of Symbolic Logic 55:244-259, 1990.Google Scholar
  8. [8]
    Cantini, A., Logical Frameworks for Truth and Abstraction. An Axiomatic Study, volume 135 of Studies in Logic and the Foundations of Mathematics, Elsevier, Amsterdam, 1996.Google Scholar
  9. [9]
    Feferman, S., 'Transfinite recursive progressions of axiomatic theories', Journal of Symbolic Logic 27:259-316, 1962.Google Scholar
  10. [10]
    Feferman, S., 'Hilbert's program relativized: proof-theoretical and foundational reductions', Journal of Symbolic Logic 53:364-384, 1988.Google Scholar
  11. [11]
    Feferman, S., 'Reflecting on incompleteness', Journal of Symbolic Logic 56:1-49, 1991.Google Scholar
  12. [12]
    Feferman, S., 'Does reductive proof theory have a viable rationale?' Erkenntnis 53:63-96, 2000.Google Scholar
  13. [13]
    Friedman, H., and M. SHEARD, 'An axiomatic approach to self-referential truth', Annals of Pure and Applied Logic 33:1-21, 1987.Google Scholar
  14. [14]
    Gupta, A., 'Truth and paradox', Journal of Philosophical Logic 11:1-60, 1982.Google Scholar
  15. [15]
    Hájek, P., J. Paris, and J.C. Sheperdson, 'The liar paradox and fuzzy logic', Journal of Symbolic Logic 65:339-346, 2000.Google Scholar
  16. [16]
    Halbach, V., 'Truth and reduction' (to appear in Erkenntnis).Google Scholar
  17. [17]
    Halbach, V., 'A system of complete and consistent truth', Notre Dame Journal of Formal Logic 35:311-327, 1994.Google Scholar
  18. [18]
    Halbach, V., 'Tarski-hierarchies', Erkenntnis, 43:339-367, 1995.Google Scholar
  19. [19]
    Halbach, V., Axiomatische Wahrheitstheorien, Akademie Verlag, Berlin, 1996.Google Scholar
  20. [20]
    Halbach, V., 'Tarskian and Kripkean truth', Journal of Philosophical Logic 26:69-80, 1997.Google Scholar
  21. [21]
    Hamkins, J., and A. Lewis, 'Infinite time Turing machines', Journal of Symbolic Logic 65:567-604, 2000.Google Scholar
  22. [22]
    Herzberger, H., 'Notes on naive semantics', Journal of Philosophical Logic 11:61-102, 1982.Google Scholar
  23. [23]
    Kahle, R., Applikative Theorien und Frege-Strukturen, PhD thesis, Universität Bern, Institut für Informatik und angewandte Mathematik, 1997.Google Scholar
  24. [24]
    Kremer, Ph., 'The Gupta-Belnap systems S# and S* are not axiomatizable', Notre Dame Journal of Formal Logic 34:583-596, 1993.Google Scholar
  25. [25]
    Kripke, S. 'Outline of a theory of truth', Journal of Philosophy 72:690-712, 1975.Google Scholar
  26. [26]
    Martin, R.L., 'On representing “true-in-L” in L', Philosophia 5:213-217, 1975.Google Scholar
  27. [27]
    Mcgee, V., 'How truth like can a predicate be?', Journal of Philosophical Logic 14:399-410, 1985.Google Scholar
  28. [28]
    Mcgee, V., Truth, Vagueness, and Paradox, Hackett Publishing, Indianapolis, 1991.Google Scholar
  29. [29]
    Moschovakis, Y., Elementary induction on abstract structures, North-Holland, Amsterdam, 1974.Google Scholar
  30. [30]
    Mostowski, A., 'Some impredicative definitions in the axiomatic set-theory', Fundamenta Mathematicæ 37:111-124, 1950.Google Scholar
  31. [31]
    Sheard, M., 'A guide to truth predicates in the modern era', Journal of Symbolic Logic 59:1032-1054, 1994.Google Scholar
  32. [32]
    Simpson, S., Subsystems of Second Order Arithmetic, Springer, Berlin, 1998.Google Scholar
  33. [33]
    Tarski, A., 'Der Wahrheitsbegriff in den formalisierten Sprachen', Studia Philosophica Commentarii Societatis PhilosophicæPolonorum 1:261-405, 1936. Reprinted as “The Concept of Truth in Formalized Languages” in Logic, Semantics, Metamathematics, Clarendon Press, Oxford, 152-278.Google Scholar
  34. [34]
    Turner, R., Truth and Modality, Pitman, London, 1990.Google Scholar
  35. [35]
    Visser, A., 'Four valued semantics and the liar', Journal of Philosophical Logic 13:181-212, 1984.Google Scholar
  36. [36]
    Visser, A., 'Semantics and the liar paradox', in Handbook of Philosophical Logic volume IV, pages 617-706, Reidel, Dordrecht, 1989.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Volker Halbach
    • 1
  1. 1.Fachgruppe PhilosophieUniversität KonstanzKonstanzGermany

Personalised recommendations