Pharmaceutical Research

, Volume 15, Issue 9, pp 1490–1494 | Cite as

Correlating Partitioning and Caco-2 Cell Permeability of Structurally Diverse Small Molecular Weight Compounds

  • Mehran Yazdanian
  • Susan L. Glynn
  • James L. Wright
  • Amale Hawi
Article
Caco-2 cells permeability partitioning octanol hexadecane propyleneglycol dipelargonate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    I. J. Hidalgo, T. J. Raub, and R. T. Borchardt. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal permeability. Gastroenterology 96:736–749 (1989).PubMedGoogle Scholar
  2. 2.
    P. Artursson. Cell cultures as models for drug absorption across the intestinal mucosa. Control. Rev. Ther. Drug. Sys. 8:305–330 (1991).Google Scholar
  3. 3.
    P. Artursson and J. Karlsson. Correlation between oral drug absorption in humans and apparent drug permeability coefficient in human intestinal epithelial (Caco-2) cells. Biochim. Biophys. Res. Commun. 175:880–885 (1991).Google Scholar
  4. 4.
    W. Rubas, N. Jezyk, and G. M. Grass. Comparison of the permeability of a human colonic epithelial (Caco-2) cell line to colon of rabbit, monkey, and dog intestine and human drug absorption. Pharm. Res. 10:113–118 (1993).PubMedGoogle Scholar
  5. 5.
    B. H. Stewart, H. O. Chan, R. H. Lu, E. L. Reyner, H. L. Schmid, H. W. Hamilton, B. A. Steinbaugh, and M. D. Taylor. Comparison of intestinal permeabilities determined in multiple in vitro and in situ models: Relationship to absorption in humans. Pharm. Res. 12:693–699 (1995).PubMedGoogle Scholar
  6. 6.
    V. A. Levin. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J. Med. Chem. 23:682–684 (1980).PubMedGoogle Scholar
  7. 7.
    L. Hovgaard, H. Brønstedt, A. Buur, and H. Bundgaard. Drug delivery studies in Caco-2 monolayers. Synthesis, hydrolysis, and transport of o-cyclopropane carboxylic acid ester prodrugs of various β-blocking agents. Pharm. Res. 12:387–392 (1995).PubMedGoogle Scholar
  8. 8.
    A. Buur, L. Trier, C. Magnusson, and P. Artursson. Permeability of 5-fluorouracil and prodrugs in Caco-2 cell monolayers. Int. J. Pharm. 129:223–231 (1996).Google Scholar
  9. 9.
    P. Wils, A. Warney, V. Phung-Ba, S. Legrain, and D. Scherman. High lipophilicity decreases drug transport across intestinal epithelial cells. J. Pharm. Expt. Ther. 269:654–658 (1994).Google Scholar
  10. 10.
    A. R. Hilgers, R. A. Conradi, and P. S. Burton. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm. Res. 7:902–910 (1990).PubMedGoogle Scholar
  11. 11.
    P. S. Burton, R. A. Conradi, A. R. Hilgers, N. F. H. Ho, and L. L. Maggiora. The relationship between peptide structure and transport across epithelial cell monolayers. J. Control. Rel. 19:87–98 (1992).Google Scholar
  12. 12.
    D. Kim, P. S. Vurton, and R. T. Borchardt. A correlation between the permeability characteristics of a series of peptides using an in vitro cell culture model (Caco-2) and those using an in situ perfused rat ileum model of the intestinal mucosa. Pharm. Res. 10:1710–1714 (1993).PubMedGoogle Scholar
  13. 13.
    K. Palm, K. Luthman, A. Ungell, G. Strandlund, and P. Artursson. Correlation of drug absorption with molecular surface properties. J. Pharm. Sci. 85:32–39 (1996).PubMedGoogle Scholar
  14. 14.
    C. Pidgeon, S. Ong, H. Liu, X. Qui., M. Pidgeon, A. Dantzig, J. Munroe, W. J. Hornback., J. S. Kasher, L. Glunz., and T. Sczerba. IAM chromatography: an in vitro screen for predicting drug membrane permeability. J. Med. Chem. 38:590–594 (1995).PubMedGoogle Scholar
  15. 15.
    R. M. Venable, Y. Zhang, B. J. Hardy, and R. W. Pastor. Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity. Science 262:223–226 (1993).PubMedGoogle Scholar
  16. 16.
    D. E. Leahy, P. J. Taylor, and A. R. Wait. Model solvent systems for QSAR Part I. Propylene glcyol dipelargonate (PGDP). A new standard solvent for use in partition coefficient determination. Quant. Struct.-Act. Relat. 8:17–31 (1989).Google Scholar
  17. 17.
    D. B. Jack. Handbook of Clinical Pharmacokinetic Data, Macmillan Publishers Ltd., 1992, pp. 25–85.Google Scholar
  18. 18.
    L. S. Goodman and A. Gilman, The Pharmacological Basis of Therapeutics, 4th ed., The Macmillan Co., 1970, pp. 334, 533, 589, 1543.Google Scholar
  19. 19.
    L. S. Goodman and A. Gilman. The Pharmacological Basis of Therapeutics, 9th ed., McGraw Hill, 1996, pp 641, 1712–1792.Google Scholar
  20. 20.
    Physicians' Desk Reference, 52 Ed. Medical Economic Co. Montvale, NJ, 1998, pp. 1127, 1677, 2559.Google Scholar
  21. 21.
    F. R. Sallee and Ollock, B. G., Clinical pharmacokinetics of imipramine and desipramine, Clin. Pharmacokinet. 18:346–364 (1990).PubMedGoogle Scholar
  22. 22.
    P. Artursson, K. Palm, and K. Luthman. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug. Delivery. Rev. 22:67–84 (1996).Google Scholar
  23. 23.
    W. J. Lyman, Reehl, W. F., and Rosenblatt, D. H., in Handbook of Chemical Property Estimation Methods: Environmental Behavior of Organic Compounds, Chapter 17, McGraw-Hill, New York, 1982.Google Scholar
  24. 24.
    K. Palm, P. Stenberg, K. Luthman, and P. Arturson, Polar molecular surface properties predict the intestinal absorption of drugs in humans, Pharm. Res. 14:568–571 (1997).PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Mehran Yazdanian
    • 1
  • Susan L. Glynn
    • 1
  • James L. Wright
    • 1
  • Amale Hawi
    • 1
  1. 1.Department of PharmaceuticsBoehringer Ingelheim Pharmaceuticals Inc.Ridgefield

Personalised recommendations