Hydrobiologia

, Volume 455, Issue 1–3, pp 137–155 | Cite as

A new chamber design for measuring community metabolism in a Michigan stream

  • D.G. Uzarski
  • T.M. Burton
  • C.A. Stricker
Article

Abstract

We designed an open-ended community metabolism chamber to simultaneously measure surface and hyporheic metabolism. Our chamber design eliminated reaeration, compartmentalized metabolism, maintained ambient conditions and included hyporheic respiration. We compared results from our hyporheic chamber to results obtained from: (1) closed benthic community metabolism chambers constructed as recommended by Bott et al. (1978), and (2) whole-stream metabolism techniques as modified by Marzolf et al. (1994). Simultaneous comparisons of all three procedures were made for a 35 m riffle section of Augusta Creek, a 3rd-order Michigan stream, in July 1997 and repeated in July 1998. Simultaneous comparisons of all three procedures were also made for a 30 m sandy run section of Augusta Creek in September 1997, and repeated in September 1998. Our hyporheic chamber estimates for community respiration (CR24) were similar to those obtained using the whole-stream metabolism procedure but were considerably higher than estimates obtained using the closed benthic chambers in three of the four experiments. These data suggest that our chamber design provided estimates of community metabolism which included both benthic and hyporheic respiration. The chamber incorporates several positive aspects of both closed chambers and the whole-stream method. This new method can be replicated, eliminates the need for a reaeration coefficient, ambient conditions are better approximated since it remains an open system, and it appears to provide more realistic estimates of whole-stream metabolism compared to the traditional chamber approach.

stream metabolism metabolism chamber whole-stream metabolism hyporheic respiration P/R primary productivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. APHA, 1985. Standard Methods for the Examination of Water and Wastewater. 15th edn. American Public Health Association, Washington, D.C.: 1134 pp.Google Scholar
  2. Baker, M. A., C. N. Dahm & H. M. Valett, 1999. Acetate retention and metabolism in the hyporheic zone of a mountain stream. Limnol. Oceanogr. 44: 1530–1539.Google Scholar
  3. Bott, T. L., 1996. Primary productivity and community respiration. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology. Academic Press, Inc., London: 533–556.Google Scholar
  4. Bott, T. L., J. T. Brock, A. Baattrup-Pedersen, P. A. Chambers, W. K. Dodds, K. T. Himbeault, J. R. Lawrence, D. Planas, E. Snyder & G. M. Wolfaardt, 1997. An evaluation of techniques for measuring periphyton metabolism in chambers. Can. J. Fish. aquat. Sci. 54: 715–725.Google Scholar
  5. Bott, T. L., J. T. Brock, C. E. Cushing, S. V. Gregory, D. King & R. C. Petersen, 1978. A comparison of methods for measuring primary productivity and community respiration in streams. Hydrobiologia 60: 3–12.Google Scholar
  6. Bott, T. L., J. T. Brock, C. S. Dunn, R. J. Naiman, R.W. Ovink & R. C. Petersen, 1985. Benthic community metabolism in four temperate stream systems: an inter-biome comparison and evaluation of the river continuum concept. Hydrobiologia 123: 3–45.Google Scholar
  7. Boulton, A. J., S. Findlay, P. Marmonier, E. H. Stanley & H. M. Valett, 1998. The functional significance of the hyporheic zone in streams and rivers. Ann. Rev. Ecol. Syst. 29: 59–81.Google Scholar
  8. Carpenter, S. R., 1996. Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77: 677–680.Google Scholar
  9. Dahm, C. N., N. B. Grimm, P. Marmonier, H.M. Valett & P. Vervier, 1998. Nutrient dynamics at the interface between surface waters and groundwater. Freshwat. Biol. 40: 427–451.Google Scholar
  10. Dodds, W. K. & J. Brock, 1998. A portable flow chamber for in-situ determination of benthic metabolism. Freshwat. Biol. 39: 49–50.Google Scholar
  11. Dole-Olivier, M. J., 1998. Surface water-groundwater exchanges in three dimensions on a backwater of the Rhône River. Freshwat. Biol. 40: 93–109.Google Scholar
  12. Ellis B. K. & J. A. Stanford, 1998. Microbial assemblages and production in allucial aquifers of the Flathead River, Montana, U.S.A. J. n. am. Benthol. Soc. 17: 382–402.Google Scholar
  13. Fetter, C. W., 1994. Applied hydrogeology. 3rd edn. Macmillan College Publishing Company, New York: 691 pp.Google Scholar
  14. Fisher, S. G. & G. E. Likens, 1973. Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecol. Monogr. 43: 421–439.Google Scholar
  15. Ford, T. E. & R. J. Naiman, 1989. Groundwater-surface water relationships in boreal forest watersheds: dissolved organic carbon and inorganic nutrient dynamics. Can. J. Fish. aquat. Sci. 46: 41–49.Google Scholar
  16. Fuss, C. L. & L. A. Smock, 1996. Spatial and temporal variation of microbial respiration rates in a blackwater stream. Freshwat. Biol. 36: 339–349.Google Scholar
  17. Grimm, N. B. & S. G. Fisher, 1984. Exchange between interstitial and surface water: implications for stream metabolism and nutrient cycling. Hydrobiologia 111: 219–228.Google Scholar
  18. Hedin, L. O., 1990. Factors controlling sediment community respiration in woodland stream ecosystems. Oikos 57: 94–105.Google Scholar
  19. Hendricks, S. P. & D. S. White, 1991. Physicochemical patterns within a hyporheic zone of northern Michigan river, with comments on surface water patterns. Can. J. Fish. aquat. Sci. 48: 1645–1654.Google Scholar
  20. Hendricks, S. P. & D. S. White, 1995. Seasonal biogeochemical patterns in surface water, subsurface water, subsurface hyporheic and riparian ground water in a temperate stream ecosystem. Arch. Hydrobiol. 134: 459–490.Google Scholar
  21. Hickey, C.W., 1988. Oxygen uptake kinetics and microbial biomass of river sewage fungus biofilms. Wat. Res. 22: 1365–1373.Google Scholar
  22. Horner, R. R. & E. B. Welch, 1981. Stream periphyton development in relation to current velocity and nutrients.Can. J. Fish. aquat. Sci. 38: 449–457.Google Scholar
  23. Horner, R. R., E. B. Welch, M. R. Seeley & J. M. Jacoby, 1990. Response of periphyton to changes in current velocity, suspended sediment and phosphorus concentration. Freshwat. Biol. 24:215–232Google Scholar
  24. Hynes, H. B. N., 1983. Groundwater and stream ecology. Hydrobiologia 111:219–228.Google Scholar
  25. Jones, J. B., 1995. Factors controlling hyporheic respiration in a desert stream. Freshwat. Biol. 34: 91–99.Google Scholar
  26. Jones, J. B., S. G. Fisher & N. B. Grimm, 1995. Vertical hydrologic exchange and ecosystem metabolism in a Sonoran Desert stream. Ecology 76: 942–952.Google Scholar
  27. King, D. K. & K. W. Cummins, 1989. Autotrophic-heterotrophic community metabolism relationships of a woodland stream. J. Freshwat. Ecol. 5: 205–218.Google Scholar
  28. Marzolf, E. R., P. J. Mulholland & A. D. Steinman, 1994. Improvements to the diurnal upstream–downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Can. J. Fish. aquat. Sci. 51: 1591–1599.Google Scholar
  29. Marzolf, E. R., P. J. Mulholland & A. D. Steinman, 1998. Reply: improvements to the diurnal upstream–downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Can. J. Fish. aquat. Sci. 55: 1786–1787.Google Scholar
  30. McCutchan, J. H., W. M. Lewis & J. F. Saunders, 1998. Uncertainty in the estimation of stream metabolism from open-channel oxygen concentrations. J. n. am. Benthol. Soc. 17: 155–164.Google Scholar
  31. McDiffett, W. F., A. E. Carr & D. L. Young, 1972. An estimate of primary productivity in a Pennsylvania trout stream using a diurnal oxygen curve technique. Am. midl. Nat. 87: 564–570.Google Scholar
  32. McIntire, C. D., R. L. Garrison, H. K. Phinney & C. E. Warren, 1964. Primary production in laboratory streams. Limnol. Oceanogr. 9: 92–102.Google Scholar
  33. Mulholland, P. J., E. R. Marzolf, J. R. Webster, D. R. Hart & S. P. Hendricks, 1997. Evidence that hyporheic zones increase heterotrophic metabolism and phosphorus uptake in forest streams. Limnol. Oceanogr. 42: 443–451.Google Scholar
  34. Naegeli, M. W., U. Hartmann, E. I. Meyer & U. Uehlinger, 1995. POM-dynamics and community respiration in the sediments of a floodprone prealpine river (Necker, Switzerland). Arch. Hydrobiol. 133: 339–347.Google Scholar
  35. Odum, H. T., 1956. Primary production in flowing waters. Limnol. Oceanogr. 1: 102–117.Google Scholar
  36. Pusch M. & J. Schwoerbel, 1994. Community respiration in hyporheic sediments of a mountain stream (Steina, Black Forest). Arch. Hydrobiol. 130: 35–52.Google Scholar
  37. Rathbun, R. E., D. W. Stephens, D. J. Schultz & D. Y. Tai, 1978. Laboratory studies of gas tracers for reaeration. Proc. ASCE 104: 215–229.Google Scholar
  38. Rutherford, J. E. & H. B. N. Hynes, 1987. Dissolved organic carbon in streams and groundwater. Hydrobiologia 154: 33–48.Google Scholar
  39. Triska, F. J., V. C. Kennedy, R. J. Avanzino, G. W. Zellweger & K. E. Bencala, 1990. In-situ retention-transport response to nitrate loading and storm discharge in a third-order stream. J. n. am. Benthol. Soc. 9: 229–239.Google Scholar
  40. Uehlinger, U. & M. W. Naegeli, 1998. Ecosystem metabolism, disturbance, and stability in a prealpine gravel bed river. J. n. am. Benthol. Soc. 17: 165–178.Google Scholar
  41. Valett, H. M., S. G. Fisher, N. B. Grimm & P. Camil, 1994. Vertical hydrologic exchange and ecological stability of a desert stream. Ecology 75: 548–560.Google Scholar
  42. Valett, H. M., S. G. Fisher & E. H. Stanley, 1990. Physical and chemical characteristics of the hyporheic zone of a Sonoran Desert Stream. J. n. am. Benthol. Soc. 9: 201–215.Google Scholar
  43. Young, R. G. & A. D. Huryn, 1996. Inter-annual variation in discharge controls ecosystem metabolism along a grassland river continuum. Can. J. Fish. aquat. Sci. 53: 2199–2211.Google Scholar
  44. Young, R. G. & A. D. Huryn, 1998. Comment: improvements to the diurnal upstream–downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Can. J. Fish. aquat. Sci. 55: 1784–1785.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • D.G. Uzarski
    • 1
  • T.M. Burton
    • 1
    • 2
  • C.A. Stricker
    • 1
  1. 1.Department of ZoologyMichigan State UniversityEast LansingU.S.A.
  2. 2.Department of Fisheries and WildlifeMichigan State UniversityEast LansingU.S.A.

Personalised recommendations