Pharmaceutical Research

, Volume 15, Issue 9, pp 1326–1331 | Cite as

Chitosan and Its Use as a Pharmaceutical Excipient

  • Lisbeth Ilium


Chitosan has been investigated as an excipient in the pharmaceutical industry, to be used in direct tablet compression, as a tablet disintegrant, for the production of controlled release solid dosage forms or for the improvement of drug dissolution. Chitosan has, compared to traditional excipients, been shown to have superior characteristics and especially flexibility in its use. Furthermore, chitosan has been used for production of controlled release implant systems for delivery of hormones over extended periods of time. Lately, the transmucosal absorption promoting characteristics of chitosan has been exploited especially for nasal and oral delivery of polar drugs to include peptides and proteins and for vaccine delivery. These properties, together with the very safe toxicity profile, makes chitosan an exciting and promising excipient for the pharmaceutical industry for present and future applications.

chitosan pharmaceutical excipient drug dissolution controlled release implant systems promotion of the transmucosal absorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Errington, S. E. Harding, K. M. Vårum, and L. Illum. Hydrodynamic characterisation of chitosan varying in molecular weight and degree of acetylation. Int. J. Biol. Macromol. 15:1123–117 (1993).Google Scholar
  2. 2.
    P. A. Sandford and G P Hutchings. Chitosan—A natural cationic biopolymer. In “Industrial Polysaccharides: Genetics Engineering, Structure/Properties Relations and Applications”. M. Yalpani (Ed.), Elsevier Science B.V., Amsterdam, pp 363–376 (1987).Google Scholar
  3. 3.
    T. Mitani, C. Nakalima, I. E. Sungkano, and H. Ishii. Effects of ionic strength on the adsorption of heavy metals by swollen chitosan beads. J. Environ. Sci. Health Part. A. Environ. Sci. Eng. Toxic. 30:669–674 (1995).Google Scholar
  4. 4.
    A. G. Imeri and D. Knorr. Effects of chitosan on yield and compositional data of carrot and apple juice. J. Food Sci. 53:1707–1710 (1988).Google Scholar
  5. 5.
    P. Stossel and J. L Leuba. Effect of chitosan, chitin and some aminosugars on growth of various soilborne phytopathogenic fungi. Phytopathology and Zoology 111:82–90 (1984).Google Scholar
  6. 6.
    R. A. A. Muzzarelli. Amphoteric derivatives of chitosan and their biological significance. In “Chitin and Chitosan Sources. Chemistry, Biochemistry, Physical Properties and Applications”, G. Skajk-Braek, T. Antonsen, P. Sanford (eds), Elsevier Applied Sciences, London, 1989.Google Scholar
  7. 7.
    P. Gross, E. Konrad, and H. Mager. Patent application DE PS 262714, (1976).Google Scholar
  8. 8.
    J. Dutkiewicz, L. Judkiewicz, A. Papiewski, M. Kucharska, and R. Ciszewski. Some uses of krill chitosan as biomaterial. In “Chitin and Chitosan, Chemistry, Biochemistry, Physical Properties and Applications”, G. Skjak-Braek, T. Anthonsen, P. Sandford (eds) Elsevier Applied Sciences, London (1989).Google Scholar
  9. 9.
    G. G. Allan, L. C. Altman, R. E. Bensinger, D. K. Ghosh, Y. Hirabayashi, A. N. Neogi, and S. Neogi. Biomedical application of chitin and chitosan. In “Chitin, Chitosan and Related Enzymes, J. P. Zikakis (ed), Academic Press, Inc., (1984).Google Scholar
  10. 10.
    M. Sugano, T. Fujikawa, Y. Hiratsuji, K. Nakashima, N. Fukuda, and Y. Hasegawa. A novel use of chitosan as a hypocholesterolemic agent in rats. Am. J. Clin. Nutr. 33:787–793 (1980).PubMedGoogle Scholar
  11. 11.
    Y. Sawayanagi, N. Nambu, and T. Nagai. Directly compressed tablets containing chitin or chitosan in addition to lactose or potato starch. Chem. Pharm. Bull. 30:2935–2940 (1982).PubMedGoogle Scholar
  12. 12.
    G. C. Ritthidej, P. Chomto, S. Pummangura, and P. Menasveta. Chitin and chitosan as disintegrants in paracetamol tablets. Drug Devel. Ind. Pharm. 20:2109–2134 (1994).Google Scholar
  13. 13.
    S. M. Upadrashta, P. R. Katikaneni, and N. O. Nuessle. Chitosan as a tablet binder. Drug Devel. Ind. Pharm. 18:1701–1708 (1992).Google Scholar
  14. 14.
    T. Nagai, Y. Sawayanagi, and N. Nambu. Application of chitin and chitosan to pharmaceutical preparations. In “Chitin, Chitosan and Related Enzymes, J. P. Zikakis (ed), Academic Press, Inc., pp 21–40 (1984).Google Scholar
  15. 15.
    A. G. Nigalaye, P. Adusumilli, and S. Bolton. Investigation of prolonged drug release from matrix formulations of chitosan. Drug. Devel. Ind. Pharm. 16:449–467 (1990).Google Scholar
  16. 16.
    T. Miyazaki, T. Komuro, C. Yomota, and S. Okada. Usage of chitosan as a pharmaceutical material: effectiveness as an additional additives of sodium alginate. Eisei Shikenjo Hokoku 108:95–97 (1990).PubMedGoogle Scholar
  17. 17.
    Y. Kawashima, T. Handa, A. Kasai, H. Takenaka, and S. Y. Lin. The effects of thickness and hardness of the coating film on the drug release rate of theophylline granules coated with chitosansodium tripolyphosphate complex. Chem. Pharm. Bull. 33:2469–2474 (1985).PubMedGoogle Scholar
  18. 18.
    J. Akbuga. The effect of physicochemical properties of a drug on its release from chitosan malate tablets. Int. J. Pharm. 100:257–261 (1993).Google Scholar
  19. 19.
    Y. Kawashima, S. Y. Lin, A. Kasai, T. Handa, and H. Takenaka. Preparation of a prolonged release tablet of aspirin with chitosan. Chem. Pharm. Bull. 33:2107–2113 (1985).PubMedGoogle Scholar
  20. 20.
    S. Miyazaki, K. Ishii, and T. Nadai. The use of chitin and chitosan as drug carriers. Chem. Pharm. Bull. 29:3067–3069 (1981).PubMedGoogle Scholar
  21. 21.
    J. Kristl, J. Smid-Korbar, E. Strue, M. Schara, and H. Rupprecht. Hydrocolloids and gels of chitosan as drug carriers. Int. J. Pharm. 99:13–19 (1993).Google Scholar
  22. 22.
    J. Knapczyk. Chitosan hydrogel as a base for semisolid drug forms. Int. J. Pharm. 93:233–237 (1993).Google Scholar
  23. 23.
    Y. Sawayanagi, N. Nambu, and T. Nagai. Enhancement of dissolution properties of griseofulvin from ground mixtures with chitin and chitosan. Chem. Pharm. Bull. 30:4464–4467 (1982).Google Scholar
  24. 24.
    W.-M. Hou, S. Miyazaki, M. Takada, and T. Komai. Sustained release of indomethacin from chitosan granules. Chem. Pharm. Bull. 33:3986–3992 (1985).PubMedGoogle Scholar
  25. 25.
    K. Takayama, M. Hirata, Y. Machida, T. Masada, T. Sannan, and T. Nagai. Effect of interpolymer complex formation on bioadhesive property and drug release phenomenon of compressed tablets consisting of chitosan and sodium hyaluronate. Chem. Pharm. Bull. 38:1993–1997 (1990).PubMedGoogle Scholar
  26. 26.
    H. Tozaki, J. Komoike, C. Tada, T. Maruyama, A. Terabe, T. Suzuki, A. Yamamoto, and S. Muranishi. Chitosan capsules for colon-specific drug delivery: improvement of insulin absorption from the rat colon. J. Pharm. Sci. 86:1016–1021 (1997).PubMedGoogle Scholar
  27. 27.
    Y. Nishioka, S. Kyotani, M. Okamura, M. Miyazaki, K. Okazaki, S. Ohnishi, Y. Yamamoto, and K. Ito. Release characteristics of cisplatin chitosan microspheres and effect of containing chitin. Chem. Pharm. Bull. 38:2871–2873 (1990).PubMedGoogle Scholar
  28. 28.
    S. R. Jameela and A. Jayakrishnan. Glutaraldehyde crosslinked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle. Biomaterials 16:769–775 (1995).PubMedGoogle Scholar
  29. 29.
    J. Akbuga and G. Durmaz. Preparation and evaluation of cross-linked chitosan microspheres containing furosemide. Int. J. Pharm. 111:217–222 (1994).Google Scholar
  30. 30.
    Z. Aydin and J. Akbuga. Chitosan beads for the delivery of salmon calcitonin: preparation and release characteristics. Int. J. Pharm. 131:101–103 (1996).Google Scholar
  31. 31.
    F.-L. Mi, T.-B. Wong, and S.-S. Shyu. Sustained-release of oxytet-racycline from chitosan microspheres prepared by interfacial acylation and spray hardening methods. J. Microencapsulation 14:577–591 (1997).PubMedGoogle Scholar
  32. 32.
    K. Aiedeh, E. Gianasi, I. Orienti, and V. Zecchi. Chitosan microcapsules as controlled release systems for insulin. J. Microencapsulation 14:567–576 (1997).PubMedGoogle Scholar
  33. 33.
    P. Calvo, C. Remunan-Lopez, J. L. Vila-Jato, and M. J. Alonso. Chitosan and chitosan/ethylene oxide propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm. Res. 14:1431–1436 (1997).PubMedGoogle Scholar
  34. 34.
    L. Y. Lim, L. S. C. Wan, and P. Y. Thai. Chitosan microspheres prepared by emulsification and ionotropic gelation. Drug Devel. Ind. Pharm. 23:981–985 (1997).Google Scholar
  35. 35.
    A. Polk, B. Amsden, K. De Yao, T. Peng, and F. A. Goosen. Controlled release of albumin from chitosan-alginate microcapsules. J. Pharm. Sci. 83:178–185 (1994).PubMedGoogle Scholar
  36. 36.
    C. Remunan-Lopez and R. Bodmeier. Effect of formulation and process variables on the formation of chitosan-gelatin coacervates. Int. J. Pharm. 135:63–72 (1996).Google Scholar
  37. 37.
    L.-S. Liu, S.-Q. Liu, S. Y. Ng, M. Froix, T. Ohno, and J. Heller. Controlled release of interleukin-2 for tumour immunotherapy using alginate/chitosan porous microspheres. J. Control. Rel. 43:65–74 (1997).Google Scholar
  38. 38.
    L. L. Balassa and J. F. Prudden. Application of chitin and chitosan in wound-healing acceleration. in “Proc. 1st Int. Conf. Chitin/Chitosan”, R. A. A. Muzzarelli and E. R. Pariser (eds), MIT Press, Cambridge, MA, USA (1978).Google Scholar
  39. 39.
    W. G. Malette, J. Quigley, and E. D. Adickes. Chitosan effect in vascular surgery, tissue culture and tissue regeneration. In “Chitin in Nature and Technology”, R. Muzzarelli, C. Jeuniaux, and G. W. Gooday (eds), Plenum Press, NY (1986).Google Scholar
  40. 40.
    L. Illum, N. F. Farraj, and S. S. Davis. Chitosan as a novel nasal delivery system for peptide drugs. Pharm. Res. 11:1186–1189 (1994).PubMedGoogle Scholar
  41. 41.
    L. Illum. The nasal route for delivery of polypeptides. In “Peptide and Protein Drug Delivery”, S. Frøkjær, L. Christrup, and P. Krogsgaard-Larsen (eds.), Munksgaard, Copenhagen (1998).Google Scholar
  42. 42.
    C.-O. Rentel, C.-M. Lehr, J. A. Bouwstra, H. L. Luessen, and H. E. Junginger. Enhanced peptide absorption by the mucoadhesive polymers polycarbophil and chitosan. Proceed. Intern. Symp. Control. Rel. Bioact. Mater. 20:446–447 (1993).Google Scholar
  43. 43.
    N. G. M. Schipper, K. M. Vårum, and P. Artursson. Chitosan as absorption enhancers for poorly absorbed drugs 1: Influence of molecular weight and degree of acetylation on drug transport across human intestinal epithelial Caco-2 cells. Pharm. Res. 13:1668–1692 (1996).PubMedGoogle Scholar
  44. 44.
    N. G. M. Schipper, S. Olsson, J. A. Hoogstraate, A. G. deBoer, K. M. Vårum, and P. Artursson. Chitosan as absorption enhancers for poorly absorbed drugs 2: Mechanism of absorption enhancement. Pharm. Res. 14:923–929 (1997).PubMedGoogle Scholar
  45. 45.
    H. L. Luessen. “Multifunctional polymers for peroral peptide drug absorption”, Labor Vincit, Leiden (1996).Google Scholar
  46. 46.
    I. Jabbal-Gill, A. N. Fisher, R. Rappuoli, S. S. Davis, and L. Illum. Stimulation in mice of mucosal and systemic antibody responses against Bordetella pertussis filamentous haemagglutinin and recombinant pertussis toxin after nasal administration with chitosan. Vaccine (in press).Google Scholar
  47. 47.
    J. Makin, A. Bacon, M. Roberts, P. J. Sizer, I. Jabbal-Gill, M. Hinchcliffe, L. Illum, and S. Chatfield. Carbohydrate biopolymers enhance antibody response to mucosally delivered vaccine antigens (submitted for publication).Google Scholar
  48. 48.
    P. Artursson, T. Lindmark, S. S. Davis, and L. Illum. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm. Res. 11:1358–1361 (1994).PubMedGoogle Scholar
  49. 49.
    V. Dodane, M. A. Khan, and J. R. Merwin. Effect of chitosan on epithelial permeability and structure. (submitted for publication).Google Scholar
  50. 50.
    T. Aspden, L. Illum, and Ø. Skaugrud. The effect of chronic nasal application of chitosan solution on cilia beat frequency in guinea pigs. Int. J. Pharm. 153:137–146 (1997).Google Scholar
  51. 51.
    T. Aspden, J. Adler, S. S. Davis, Ø. Skaugrud, and L. Illum. Chitosan as a nasal delivery system: Evaluation of the effect of chitosan on mucociliary clearance rate in the frog palate model. Int. J. Pharm. 122:69–78 (1995).Google Scholar
  52. 52.
    T. J. Aspden, J. D. T. Mason, N. Jones, J. Lowe, Ø. Skaugrud, and L. Illum. Chitosan as a nasal delivery system: The effect of chitosan on in vitro and in vivo mucociliary transport rates. J. Pharm. Sci. 86:509–513 (1997).PubMedGoogle Scholar
  53. 53.
    T. Aspden, L. Illum, and Ø. Skaugrud. Chitosan as a nasal delivery system: Evaluation of insulin absorption ednhancement and effect on nasal membrane integrety using rat models. Eur. J. Pharm. Sci. 4:23–31 (1996).Google Scholar
  54. 54.
    K. Arai, T. Kinumaki, and T. Fujita. Toxicity of chitosan. Bull. Tokai Reg. Fish Lab. 43:89–94 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Lisbeth Ilium
    • 1
  1. 1.DanBioSyst UK Ltd, Albert Einstein CentreNottinghamUK

Personalised recommendations