Advertisement

Pharmaceutical Research

, Volume 15, Issue 5, pp 726–733 | Cite as

Correlation Between Oral Drug Absorption in Humans, and Apparent Drug Permeability in TC-7 Cells, A Human Epithelial Intestinal Cell Line: Comparison with the Parental Caco-2 Cell Line

  • Marie-Catherine Grès
  • Bernard Julian
  • Martine Bourrié
  • Viviane Meunier
  • Claude Roques
  • Marion Berger
  • Xavier Boulenc
  • Yves Berger
  • Gérard Fabre
Article

Abstract

Purpose. To determine and compare the relationship between in vivo oral absorption in humans and the apparent permeability coefficients (P app ) obtained in vitro on two human intestinal epithelial cell lines, the parental Caco-2 and the TC-7 clone.

Methods. Both cell lines were grown for 5−35 days on tissue culture-treated inserts. Cell monolayers were analysed for their morphology by transmission electron micrography, and for their integrity with respect to transepithelial electrical resistance, mannitol and PEG-4000 transport, and cyclosporin efflux. Papp were determined for 20 compounds exhibiting large differences in chemical structure, molecular weight, transport mechanisms, and percentage of absorption in humans.

Results. The TC-7 clone exhibits morphological characteristics similar to those of the parental Caco-2 cell line, concerning apical brush border, microvilli, tight junctions and polarisation of the cell line. The TC-7 clone however appeared more homogenous in terms of cell size. Both cell lines achieved a similar monolayer integrity towards mannitol and PEG-4000. Monolayer integrity was achieved earlier for the TC-7 clone, mainly due to its shorter doubling time, i.e. 26 versus 30 hours for parental Caco-2 cells. When using cyclosporin A as a P-glycoprotein substrate, active efflux was lower in the TC-7 clone than in the parental Caco-2 cells. The Papp and mechanisms of transport (paracellular or transcellular routes, passive diffusion and active transport) were determined for 20 drugs. A relationship was established between the in vivo oral absorption in humans and Papp values, allowing to determine a threshold value for Pappof 2 10−6 cm/sec, above for which a 100% oral absorption could be expected in humans. Both correlation curves obtained with the two cell types, were almost completely superimposable. These studies also confirmed that the dipeptide transporter is underexpressed in both cell lines.

Conclusions. On the basis of morphological parameters, biochemical activity and drug transport characteristics, the TC-7 clone appeared to be a valuable alternative to the use of parental Caco-2 cells for drug absorption studies.

Caco-2 cells in vitro absorption in vitro-in vivo relationship 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    P. Artursson. Cell culture as models for drug absorption across the intestinal mucosa. Crit. Rev. Ther. Drug Carrier System 8:105–130 (1991).Google Scholar
  2. 2.
    J. Fogh, J. M. Fogh, and T. Orfeo, 127 Cultured human colon cell lines producing tumors in nude mice. J. Natl. Acad. Sci. U.S.A. 59:221–226 (1977).Google Scholar
  3. 3.
    M. Pinto, S. Robine-Leon, M. D. Appay, M. Kedinger, N. Triadou, E. Dussaulx, B. Lacroix, P. Simon-Assmann, K. Haffen, J. Fogh, and A. Zweibaum. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol. Cell. 47:323–330 (1983).Google Scholar
  4. 4.
    M. D. Peterson and M. S. Mooseker. Characterization of the enterocyte-like brush border cytoskeleton of the C2BBe clones of the human intestinal cell line Caco-2. J. Cell Sci. 102:581–600 (1992).PubMedGoogle Scholar
  5. 5.
    A. R. Hilgers, R. A. Conradi, and P. S. Burton. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm. Res. 7:902–910 (1990).PubMedGoogle Scholar
  6. 6.
    G. Wilson, I. F. Hassan, C. J. Dix, I. Williamson, R. Shah, M. Mackay, and P. Artursson. Transport and permeability properties of human Caco-2 cells: an in vitro model of the intestinal epithelial cell barrier. J. Controlled Rel. 11:25–40 (1990).Google Scholar
  7. 7.
    E. K. Anderberg and P. Artursson. Epithelial transport of drugs in cell culture. VIII: Effects of sodium dodecyl sulfate on cell membrane and tight junction permeability in human intestinal epithelial Caco-2 cells. J. Pharm. Sci. 82:392–398 (1993).PubMedGoogle Scholar
  8. 8.
    R. T. Borchardt, I. J. Hidalgo, K. M. Hillgren, and M. Hu. Pharmaceutical applications of cell culture: an overview. In Pharmaceutical applications of cell and tissue culture to drug transport, G. Wilson, S. S. Davis, L. Illum, and A. Zweibaum (eds.) Vol. 218, pp. 1–14, 1991 Plenum Press, New York.Google Scholar
  9. 9.
    R. A. Conradi, A. R. Hilgers, N. F. H. Ho, and P. S. Burton. The influence of peptide structure on transport across Caco-2 cells. Pharm. Res. 8:1453–1460 (1991).PubMedGoogle Scholar
  10. 10.
    I. J. Hidalgo and R. T. Borchardt. Transport of bile acids in a human intestinal epithelial cell line, Caco-2. Biochim. Biophys. Acta 1035:97–103 (1990).PubMedGoogle Scholar
  11. 11.
    J. N. Cogburn, M. G. Donovan, and C. S. Schasteen. Correlation of Caco-2 transport with human oral bioavailability. J. Controlled Release 13: 314–315 (1990).Google Scholar
  12. 12.
    I. J. Hidalgo, T. J. Raub, and R. T. Borchardt. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–749 (1989).PubMedGoogle Scholar
  13. 13.
    B. H. Stewart, O. H. Chan, R. H. Lu, E. L. Reyner, H. L. Schmid, H. W. Hamilton, B. A. Steinbaugh, and M. D. Taylor. Comparison of intestinal permeabilities determined in multiple in vitro and in situ models: relationship to absorption in humans. Pharm. Res. 12:693–699 (1995).PubMedGoogle Scholar
  14. 14.
    W. Rubas, N. Jezyk, and G. M. Grass. Comparison of the permeability characteristics of a human colonic epithelial (Caco-2) cell line to colon of rabbit, monkey, and dog intestine and human drug absorption. Pharm. Res. 10:113–118 (1993).PubMedGoogle Scholar
  15. 15.
    S. Woodcock, I. Williamson, I. Hassan, and M. Mackay. Isolation and characterization of clones from Caco-2 cell line displaying increased taurocholic acid transport. J. Cell Sci. 98:323–332 (1991).PubMedGoogle Scholar
  16. 16.
    I. Chantret, A. Rodolosse, A. Barbat, E. Dussaulx, E. Brot-Laroche, A. Zweibaum, and M. Rousset. Differential expression of sucrase-isomaltase in clones isolated from early and late passages of the cell line Caco-2: evidence for a glucose-dependent negative regulation. J. Cell. Sci. 107:213–25 (1994).PubMedGoogle Scholar
  17. 17.
    L. Mahraoui, A. Rodolosse, A. Barbat, E. Dussaulx, A. Zweibaum, M. Rousset, and E. Brot-Laroche. Presence and differential expression of SGLT1, GLUT1, GLUT2, GLUT3 and GLUT5 hexose transporters mRNAs in Caco-2 cell clones in relation to cell growth and glucose consumption. Biochem J. (1994).Google Scholar
  18. 18.
    I. Caro, X. Boulenc, M. Rousset, V. Meunier, M. Bourrié, B. Julian, H. Joyeux, C. Roques, Y. Berger, A. Zweibaum, and G. Fabre. Characterisation of a newly isolated Caco-2 clone (TC-7), as a model of transport processes and biotransformation of drugs. Int. J. Pharm. 116:147–58 (1995).Google Scholar
  19. 19.
    X. Boulenc, E. Marti, C. Roques, H. Joyeux, Y. Berger, and G. Fabre. Importance of the paracellular pathway for the transport of a new bisphosphonate using the human Caco-2 monolayers model. Biochem. Pharmacol. 46:1591–1600 (1993).PubMedGoogle Scholar
  20. 20.
    M. Neutra and H. Padykula. in: L. Weiss (Ed.), Histology: Cell and Tissue Biology, Elsevier, Amsterdam, pp. 658–660 (1983).Google Scholar
  21. 21.
    P. Artursson and J. Karlsson. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial Caco-2 cells. Biochem. Biophys. Res. Commun. 175:880–885 (1991).PubMedGoogle Scholar
  22. 22.
    P. Artursson, A.-L. Ungell, and J.-E. Löfroth. Selective paracellular permeability in two models of intestinal absorption: cultured monolayers of human intestinal epithelial cells and rat intestinal segments. Pharm. Res. 10:1123–1129 (1993).PubMedGoogle Scholar
  23. 23.
    L. Borgström, L. Nyberg, S. Jönsson, C. Lindberg, and J. Paulson. Pharmacokinetic evaluation in man of terbutaline given as separate enantiomers and as the racemate. Br. J. Clin. Pharmacol. 27:49–56 (1989).PubMedGoogle Scholar
  24. 24.
    V. S. Chadwick, S. F. Phillips, and A. F. Hofmann. Measurements of intestinal permeability using low molecular weight polyethylene glycols (PEG 400). Gastroenterology 73:241–246 (1977).PubMedGoogle Scholar
  25. 25.
    S. Chong, S. A. Dando, K. M. Soucek, and R. A. Morrison. In vitro permeability through Caco-2 cells is not quantitatively predictive of in vivo absorption for peptide-like drugs absorbed via the dipeptide transporter system. Pharm. Res. 13:120–123 (1996).PubMedGoogle Scholar
  26. 26.
    Clarke's Isolation and Identifying of drugs, 2nd edition. Ed. A. C. Moffat. The Pharmaceutical Press, London (1986).Google Scholar
  27. 27.
    G. M. Gray and F. J. Ingelfinger. Intestinal absorption of sucrose in man: interrelation of hydrolysis and monosaccharide product absorption. J. Clin. Invest. 45:388–398 (1966).PubMedGoogle Scholar
  28. 28.
    H. Lennernäs, K. Palm, U. Fagerholm, and P. Artursson. Comparison between active and passive drug transport in human intestinal epithelial (Caco-2) cells in vitro and human jejunum in vivo. Int. J. Pharm. 127:103–107 (1996).Google Scholar
  29. 29.
    Martindale, 27th edition. Ed. A. Wade. The pharmaceutical Press, London (1977).Google Scholar
  30. 30.
    P. Nicolas, B. R. Meyers and S. Z. Hirschman. Cephalexin: Pharmacological evaluation following oral and parenteral administration. J. Clin. Pharmacol. November–December, 463–468 (1973).Google Scholar
  31. 31.
    R. J. Ptachinski, R. Venkatamaranan, and G. J. Burckart. Clinical pharmacokinetic of cyclosporin. Clin. Pharmacokin. 11:107–132 (1986).Google Scholar
  32. 32.
    A. Sandberg. Extended-release metoprolol. Doctorial Thesis, Uppsala (1994).Google Scholar
  33. 33.
    B. H. Stewart, A. R. Kugler, P. R. Thompson, and H. N. Bockbrader. A saturable transport mechanism in the intestinal absorption of gabapentin is the underlying cause of the lack of proportionality between increasing dose and drug levels in plasma. Pharm. Res. 10:276–281 (1993).PubMedGoogle Scholar
  34. 34.
    K. C. H. Yeh, T. F. August, D. F. Bush, K. C. Lasseter, D. G. Musson, S. Schwartz, M. E. Smith, and D. C. Titus. Pharmacokinetics and bioavailability of Sinemet C: a summary of human studies. Neurol. 39:25–35 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Marie-Catherine Grès
    • 1
  • Bernard Julian
    • 1
  • Martine Bourrié
    • 1
  • Viviane Meunier
    • 1
  • Claude Roques
    • 1
  • Marion Berger
    • 1
  • Xavier Boulenc
    • 1
  • Yves Berger
    • 1
  • Gérard Fabre
    • 1
  1. 1.Department of Preclinical Metabolism and PharmacokineticsSanofi RechercheMontpellier, Cédex 4France

Personalised recommendations