Advertisement

Biochemistry (Moscow)

, Volume 66, Issue 8, pp 918–925 | Cite as

Characteristics of Sarcoplasmic Reticulum Membrane Preparations Isolated from Skeletal Muscles of Active and Hibernating Ground Squirrel Spermophilus undulatus

  • A. N. Malysheva
  • K. B. Storey
  • R. Kh. Ziganshin
  • O. D. Lopina
  • A. M. Rubtsov
Article

Abstract

The total Ca-ATPase activity in the sarcoplasmic reticulum (SR) membrane fraction isolated from skeletal muscles of winter hibernating ground squirrel Spermophilus undulatus is ∼2.2-fold lower than in preparations obtained from summer active animals. This is connected in part with ∼10% decrease of the content of Ca-ATPase protein in SR membranes. However, the enzyme specific activity calculated with correction for its content in SR preparations is still ∼2-fold lower in hibernating animals. Analysis of the protein composition of SR membranes has shown that in addition to the decrease in Ca-ATPase content in hibernating animals, the amount of SR Ca-release channel (ryanodine receptor) is decreased ∼2-fold, content of Ca-binding proteins calsequestrin, sarcalumenin, and histidine-rich Ca-binding protein is decreased ∼3-4-fold, and the amount of proteins with molecular masses 55, 30, and 22 kD is significantly increased. Using the cross-linking agent cupric–phenanthroline, it was shown that in SR membranes of hibernating ground squirrels Ca-ATPase is present in a more aggregated state. The affinity of SR membranes to the hydrophilic fluorescent probe ANS is higher and the degree of excimerization of the hydrophobic probe pyrene is lower (especially for annular lipids) in preparations from hibernating than from summer active animals. The latter indicates an increase in the microviscosity of the lipid environment of Ca-ATPase during hibernation. We suggest that protein aggregation as well as the changes in protein composition and/or in properties of lipid bilayer SR membranes can result in the decrease of enzyme activity during hibernation.

sarcoplasmic reticulum Ca-ATPase Ca-binding proteins calsequestrin sarcalumenin histidine-rich Ca-binding protein ground squirrel Spermophilus undulatus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Lyman, C. P. (1982) in Hibernation and Torpor in Mammals and Birds (Lyman, C. P., Willis, J. S., Malan, A., and Wang, L. C. H., eds.) Academic Press, N. Y., pp. 1-121.Google Scholar
  2. Kalabukhov, N. I. (1985) Hibernation of Mammals [in Russian], Nauka, Moscow.Google Scholar
  3. Panteleev, P. A. (1983) Bioenergetics of Small Mammals [in Russian], Nauka, Moscow.Google Scholar
  4. Wang, L. C. H. (1985) Cryo-Lett., 6, 257-274.Google Scholar
  5. Geiser, F. (1988) J. Comp. Physiol., B158, 25-37.Google Scholar
  6. Heldmaier, G., and Ruf, T. (1992) J. Comp. Physiol., B162, 696-706.Google Scholar
  7. El Hachimi, Z., Tijuane, M., Boissonnet, G., Benjouad, A., Desmadril, M., and Yon, J. M. (1990) Comp. Biochem. Physiol., 96B, 457-459.Google Scholar
  8. Brooks, S. P. J., and Storey, K. B. (1992) J. Comp. Physiol., B162, 23-28.Google Scholar
  9. Fedotcheva, N. J., Sharyshev, A. A., Mironova, G. D., and Kondrashova, M. N. (1985) Comp. Biochem. Physiol., 82B, 191-195.Google Scholar
  10. Bronnikov, G. E., Vinogradova, S. O., and Mezentseva, V. S. (1990) Comp. Biochem. Physiol., 97B, 411-415.Google Scholar
  11. Storey, K. B. (1987) J. Biol. Chem., 262, 1670-1673.PubMedGoogle Scholar
  12. Nevretdinova, Z., Solovenchuk, L., and Lapinski, A. (1992) Arctic Med. Res., 51, 196-204.PubMedGoogle Scholar
  13. Storey, K. B. (1997) Comp. Biochem. Physiol., 118B, 1115-1124.Google Scholar
  14. Kondo, N., and Shibata, S. (1984) Science, 225, 641-643.PubMedGoogle Scholar
  15. Kondo, N. (1986) Experientia, 42, 1220-1222.PubMedGoogle Scholar
  16. Kondo, N. (1988) Br. J. Pharmacol., 95, 1287-1291.PubMedGoogle Scholar
  17. Alekseev, A. E., Markevich, N. I., Korystova, A. F., Terzic, A., and Kokoz, Yu. M. (1996) Biophys. J., 70, 786-797.PubMedGoogle Scholar
  18. Kokoz, Yu. M., Grichenko, A. S., Korystova, A. F., Lankina, D. A., and Markevich, N. I. (1999) Biosci. Rep., 19, 17-25.PubMedGoogle Scholar
  19. Belke, D. D., Pehowich, D. J., and Wang, L. C. H. (1987) J. Therm. Biol., 12, 53-56.Google Scholar
  20. Liu, B., Belke, D. D., and Wang, L. C. H. (1997) Am. J. Physiol., 272, R1121-R1127.PubMedGoogle Scholar
  21. Milner, R. E., Michalak, M., and Wang, L. C. H. (1991) Biochim. Biophys. Acta, 1063, 120-128.PubMedGoogle Scholar
  22. Block, B. A. (1994) Ann. Rev. Physiol., 56, 535-577.Google Scholar
  23. Ritov, V. B., Mel′gunov, V. I., Komarov, P. G., Alekseeva, O. V., and Akimova, E. I. (1977) Dokl. Akad. Nauk SSSR, 223, 727-733.Google Scholar
  24. Shutova, A. N., Storey, K. B., Lopina, O. D., and Rubtsov, A. M. (1999) Biochemistry (Moscow), 64, 1250-1257.Google Scholar
  25. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem., 195, 265-275.Google Scholar
  26. Bartlett, G. R. (1959) J. Biol. Chem., 234, 466-468.PubMedGoogle Scholar
  27. Laemmli, U. K. (1970) Nature, 227, 680-685.PubMedGoogle Scholar
  28. Shorina, E. A., Mast, N. V., Lopina, O. D., and Rubtsov, A. M. (1997) Biochemistry, 36, 13455-13460.PubMedGoogle Scholar
  29. Geimonen, E. R., Batrukova, M. A., and Rubtsov, A. M. (1994) Eur. J. Biochem., 225, 347-354.PubMedGoogle Scholar
  30. Lakowicz, J. R. (1983) Principles of Fluorescence Spectroscopy, Plenum Press, N. Y.Google Scholar
  31. Sepetliev, D. (1968) Statistical Methods in Scientific Medical Researches [in Russian], Meditsina, Moscow.Google Scholar
  32. Shoshan-Barmatz, V., Orr, I., Well, S., Meyer, H., Varsanyi, M., and Heilmeyer, L. M. (1996) Biochim. Biophys. Acta, 1283, 89-100.PubMedGoogle Scholar
  33. Mackrill, J. J. (1999) Biochem. J., 337, 345-361.PubMedGoogle Scholar
  34. Sutko, J. L., and Airey, J. A. (1996) Physiol. Rev., 76, 1027-1071.PubMedGoogle Scholar
  35. Krause, K.-H., and Michalak, M. (1997) Cell, 88, 439-443.PubMedGoogle Scholar
  36. Koyabu, S., Imanaka-Yoshida, K., Ioshi, S. O., Nakano, T., and Yoshida, T. (1994) Cell Motil. Cytoskeleton, 29, 259-270.PubMedGoogle Scholar
  37. Andersen, J. P. (1989) Biochim. Biophys. Acta, 988, 47-72.PubMedGoogle Scholar
  38. Mahaney, J. E., and Thomas, D. D. (1991) Biochemistry, 30, 7171-7180.PubMedGoogle Scholar
  39. Voss, J. C., Mahaney, J. E., and Thomas, D. D. (1995) Biochemistry, 34, 930-939.PubMedGoogle Scholar
  40. Azzam, N. A., Hallenbeck, J. M., and Kachar, B. (2000) Nature, 407, 317-318.PubMedGoogle Scholar
  41. Lee, A. G., Dalton, K. A., Duggleby, R. C., East, J. M., and Starling, A. P. (1995) Biosci. Rep., 15, 289-298.PubMedGoogle Scholar
  42. Vladimirov, Yu. A., and Dobretsov, G. E. (1980) Fluorescent Probes in the Study of Biological Membranes [in Russian], Nauka, Moscow.Google Scholar
  43. Vekshina, O. V., and Vekshin, N. P. (1989) Mol. Biol. (Moscow), 23, 1041-1050.Google Scholar
  44. McDonald, J. A., and Storey, K. B. (1999) Biochem. Biophys. Res. Commun., 254, 424-429.PubMedGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • A. N. Malysheva
    • 1
  • K. B. Storey
    • 2
  • R. Kh. Ziganshin
    • 3
  • O. D. Lopina
    • 1
  • A. M. Rubtsov
    • 1
  1. 1.Department of Biochemistry, School of BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Department of Biology and Department of ChemistryCarleton UniversityOttawaCanada
  3. 3.Laboratory of Peptide Chemistry, Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations