Pharmaceutical Research

, Volume 15, Issue 11, pp 1737–1742 | Cite as

Enhanced Encapsulation of Amphotericin B into Liposomes by Complex Formation with Polyethylene Glycol Derivatives

  • Kunikazu Moribe
  • Eitaro Tanaka
  • Kazuo Maruyama
  • Motoharu Iwatsuru


Purpose. A highly efficient method was developed for the encapsulation of amphotericin B (AmB) in liposomes, and the mechanism involved was characterized.

Methods. AmB was encapsulated in dipalmitoylphosphatidylcholine/cholesterol (DPPC/CH, 2:1) liposomes after complex formation with distearoyl-N-(monomethoxy poly(ethylene glycol) succinyl) phosphatidylethanolamine (DSPE-PEG). Hydration of lipids was done with 9% sucrose solution.

Results. The encapsulated amount of AmB was 111 μg/mg lipid, which was much higher than that obtained by the same method without DSPE-PEG (14 μg/mg lipid). The amount encapsulated increased with amount of DSPE-PEG used and with PEG molecular weight. Encapsulation efficacy was also influenced by the type of PEG derivatives used and by the modification of AmB, suggesting the involvement of complex formation between AmB and DSPE-PEG. Absorption and 31P-NMR spectral analyses indicated that interactions between the amino and phosphate groups and between the polyene and PEG moieties in AmB and DSPE-PEG, respectively, play an important role in the complex formation.

Conclusions. Complex formation of AmB with DSPE-PEG allows the highly efficient encapsulation of the drug in liposomes. This simple technique should be applicable to other hydrophobic drugs.

amphotericin B liposome polyethylene glycol 31P-NMR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Gates and R. J. Pinney. Amphotericin B and its delivery by liposomal and lipid formulations. J. Clin. Pharmacol. Ther. 18:147–153 (1993).Google Scholar
  2. 2.
    R. Janknegt, S. De Marie, I. A. J. M. Bakker-Woudenberg, and D. J. A. Crommelin. Liposomal and lipid formulations of Amphotericin B—Clinical pharmacokinetics. Clin. Pharmacokinet. 23:279–291 (1992).Google Scholar
  3. 3.
    E. W. M. Van Etten, M. Otte-Lambillion, W. Van Vianen, M. T. Ten Kate, and I. A. J. M. Bakker-Woudenberg. Biodistribution of liposomal amphotericin B (AmBisome) and amphotericin B-deoxycholate (Fungizone) in uninfected immunocompetent mice and leucopenic mice infected with Candida albicans. J. Antimicrob. Chemother. 35:509–519 (1995).Google Scholar
  4. 4.
    E. W. M. Van Etten, W. Van Vianen, R. Tijhuis, G. Storm, and I. A. J. M. Bakker-Woudenberg. Sterically stabilized amphotericin B-liposomes: toxicity and biodistribution in mice. J. Contr. Rel. 37:123–129 (1995).Google Scholar
  5. 5.
    S. Kohno, T. Otsubo, E. Tanaka, K. Maruyama, and K. Hara. Amphotericin B encapsulated in polyethylene glycol-immunoliposomes for infectious diseases. Adv. Drug Deliv. Rev. 24:325–329 (1997).Google Scholar
  6. 6.
    T. Otsubo, K. Maruyama, S. Maesaki, Y. Miyazaki, E. Tanaka, T. Takizawa, K. Moribe, K. Tomono, T. Tashiro, and S. Kohno. Long-circulating immunoliposomal amphotericin B against invasive pulmonary aspergillosis in mice. Antimicrob. Agents Chemother. 42:40–44 (1998).Google Scholar
  7. 7.
    K. Moribe, K. Maruyama, E. Tanaka, M. Iwatsuru, T. Otsubo, and S. Kohno. Characterization of polyene antibiotics encapsulating PEG-liposomes. In T. Akaike, T. Okano, M. Akashi, M. Terano, and N. Yui, (eds.), Advances in Polymeric Biomaterials Science, CMC Co., Ltd., Tokyo, 1997, pp. 213–222.Google Scholar
  8. 8.
    J. Bolard, P. Legrand, F. Heitz, and B. Cybulska. One-sided action of amphotericin B on cholesterol-containing membranes is determined by its self-association in the medium. Biochemistry 30:5707–5715 (1991).Google Scholar
  9. 9.
    S. C. Hartsel, W. R. Perkins, G. J. McGarvey, and D. S. Cafiso. A selective cholesterol-dependent induction of H+/OH currents in phospholipid vesicles by amphotericin B. Biochemistry 27:2656–2660 (1988).Google Scholar
  10. 10.
    S. C. Hartsel, C. Hatch, and W. Ayenew. How does amphotericin B work?: Studies on model membrane system. J. Liposome Res. 3:377–408 (1993).Google Scholar
  11. 11.
    A. R. Balakrishnan and K. R. F. Easwaran. Lipid-amphotericin B complex structure in solution: A possible first step in the aggregation process in cell membrane. Biochemistry 32:4139–4144 (1993).Google Scholar
  12. 12.
    A. R. Balakrishnan and K. R. F. Easwaran. CD and NMR studies on the aggregation of amphotericin-B in solution. Biochim. Biophys. Acta. 1148:269–277 (1993).Google Scholar
  13. 13.
    V. Khutorsky. Ion coordination in amphotericin B channel. Biophys. J. 71:2984–2995 (1996).Google Scholar
  14. 14.
    J. Langlet, J. Berges, J. Caillit, and J. P. Demaret. Theoretical study of the complexation of amphotericin B with sterols. Biochim. Biophys. Acta. 1191:79–93 (1994).Google Scholar
  15. 15.
    K. Maruyama, T. Yuda, S. Okamoto, S. Kojima, A. Suginaka, and M. Iwatsuru. Prolonged circulation time in vitro of large unilamellar liposomes composed of distearoylphosphatidylcholine and cholesterol containing amphiphatic poly(ethylene glycol). Biochim. Biophys. Acta. 1128:44–49 (1992).Google Scholar
  16. 16.
    W. Mechlinski and C. P. Schaffner. N-Acylation and esterification reactions with amphotericin B. J. Antibiot. 25:256–258 (1972).Google Scholar
  17. 17.
    J. Mazerski, J. Bolard, and E. Borowski. Effect of the modification of ionizable groups of amphotericin B on its ability to form complexes with sterols in hydroalcoholic media. Biochim. Biophys. Acta. 1236:170–176 (1995).Google Scholar
  18. 18.
    K. Shimada, A. Miyagishima, Y. Sadzuka, Y. Nozawa, Y. Mochizuki, H. Ohshima, and S. Hirota. Determination of the thickness of the fixed aqucous layer around polyethyleneglycol-coated liposomes. J. Drug Targeting 3:283–289 (1995).Google Scholar
  19. 19.
    P. Ganis, G. Avitabile, W. Mechlinski, and C. P. Schaffner. Polyene macrolide antibiotic amphotericin B. Structure of the N-iodoacetyl derivative. J. Am. Chem. Soc. 93:4560–4564 (1971).Google Scholar
  20. 20.
    A. K. Kenworthy, S. A. Simon, and T. J. McIntosh. Structure and phase behavior of lipid suspensions containing phospholipids with covalently attached poly(ethylene glycol). Biophys. J. 68:1903–1920 (1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Kunikazu Moribe
    • 1
  • Eitaro Tanaka
    • 1
  • Kazuo Maruyama
    • 1
  • Motoharu Iwatsuru
    • 1
  1. 1.Faculty of Pharmaceutical SciencesTeikyo UniversitySagamiko, KanagawaJapan

Personalised recommendations