Pharmaceutical Research

, Volume 15, Issue 10, pp 1569–1578

Epidermal Iontophoresis: I. Development of the Ionic Mobility-Pore Model

  • Michael S. Roberts
  • Pamela M. Lai
  • Yuri G. Anissimov


Purpose. An integrated ionic mobility-pore model for epidermal iontophoresis is developed from theoretical considerations using both the free volume and pore restriction forms of the model for a range of solute radii (rj) approaching the pore radii (rp) as well as approximation of the pore restriction form for rj /rp < 0.4. In this model, we defined the determinants for iontophoresis as solute size (defined by MV, MW or radius), solute mobility, solute shape, solute charge, the Debye layer thickness, total current applied, solute concentration, fraction ionized, presence of extraneous ions (defined by solvent conductivity), epidermal permselectivity, partitioning rates to account for interaction of unionized and ionized lipophilic solutes with the wall of the pore and electroosmosis.

Methods. The ionic mobility-pore model was developed from theoretical considerations to include each of the determinants of iontophoretic transport. The model was then used to reexamine iontophoretic flux conductivity and iontophoretic flux-fraction ionized literature data on the determinants of iontophoretic flux.

Results. The ionic mobility-pore model was found to be consistent with existing experimental data and determinants defining iontophoretic transport. However, the predicted effects of solute size on iontophoresis are more consistent with the pore-restriction than free volume form of the model. A reanalysis of iontophoretic flux-conductivity data confirmed the model's prediction that, in the absence of significant electroosmosis, the reciprocal of flux is linearly related to either donor or receptor solution conductivity. Significant interaction with the pore walls, as described by the model, accounted for the reported pH dependence of the iontophoretic transport for a range of ionizable solutes.

Conclusions. The ionic mobility-pore iontophoretic model developed enables a range of determinants of iontophoresis to be described in a single unifying equation which recognises a range of determinants of iontophoretic flux.

iontophoresis ionic mobility free volume model Debye layer pore 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. M. Lai and M. S. Roberts. Iontophoresis. In M. S. Roberts and K. Walters (eds), Dermal Absorption and Toxicity Assessment, Marcel Dekker, New York, 1998, pp. 379-422.Google Scholar
  2. 2.
    N. H. Bellantone, S. Rim, M. L. Francoeur, and B. Rasadi. Enhanced percutaneous absorption via iontophoresis. I. Evaluation of an in vitro system and transport of model compounds. Int. J. Pharm. 30:63-72 (1986).Google Scholar
  3. 3.
    L. P. Gangarosa, N. H. Park, B. C. Fong, D. F. Scott, and J. M. Hill. Conductivity of drugs used for iontophoresis. J. Pharm. Sci. 67:1439-1443 (1978).PubMedGoogle Scholar
  4. 4.
    O. Siddiqui, M. S. Roberts, and A. E. Polack. The effect of iontophoresis and vehicle pH on the in-vitro permeation of lignocaine through human stratum corneum. J. Pharm. Pharmacol. 37:732-735 (1985).PubMedGoogle Scholar
  5. 5.
    M. S. Roberts, J. Singh, N. Yoshida, and K. I. Currie. Iontophoretic transport of selected solutes through human epidermis. In R. C. Scott, J. Hadgraft, and R. Guy (eds.), Prediction of Percutaneous Absorption; IBC Technical Services Ltd, London, 1990, pp. 231-241.Google Scholar
  6. 6.
    J. B. Phipps and J. R. Gyory. Transdermal ion migration. Adv. Drug Del. Rev. 9:137-176 (1992).Google Scholar
  7. 7.
    N. H. Yoshida and M. S. Roberts. Role of conductivity in iontophoresis, 2. Anodal iontophoretic transport of phenylethylamine and sodium across excised human skin. J. Pharm. Sci. 83:344-350 (1994).PubMedGoogle Scholar
  8. 8.
    N. H. Yoshida and M. S. Roberts. Prediction of cathodal iontophoretic transport of various anions across excised skin from different vehicles using conductivity measurements. J. Pharm. Pharmacol. 47:883-890 (1995).PubMedGoogle Scholar
  9. 9.
    N. H. Yoshida and M. S. Roberts. Structure-transport relations in transdermal iontophoresis. Adv. Drug Del. Rev. 9:239-264 (1992).Google Scholar
  10. 10.
    N. H. Yoshida and M. S. Roberts. Solute molecular size and transdermal iontophoresis across excised human skin. J. Contr. Rel. 25:177-195 (1993).Google Scholar
  11. 11.
    S. Dinh, C. W. Luo, and B. Berner. Upper and lower limits of human skin electrical resistance in iontophoresis. AIChE J. 39:2011-2018 (1993).Google Scholar
  12. 12.
    S. B. Ruddy and B. A. Hadzija. Iontophoretic permeability of polyethylene glycols through hairless rat skin: application of hydrodynamic theory for hindered transport through liquid-filled pores. Drug Des. Discovery 8:207-224 (1992).Google Scholar
  13. 13.
    P. M. Lai and M. S. Roberts. Epidermal iontophoresis: II. Application of the ionic mobility-pore model to the transport of local anesthetics. Pharm. Res. 15:1579-1588 (1998).PubMedGoogle Scholar
  14. 14.
    W. M. Deen. Hindered transport of large molecules in liquidfilled pores. AIChE J. 33:1409-1425 (1987).Google Scholar
  15. 15.
    E. R. Scott, A. I. Laplaza, H. S. White, and J. B. Phipps. Transport of ionic species in skin: contribution of pores to the overall skin conductance. Pharm. Res. 10:1699-1709 (1993).PubMedGoogle Scholar
  16. 16.
    M. G. Davidson and W. M. Deen. Hydrodynamic theory for the hindered transport of flexible macromolecules in porous membranes. J. Membr. Sci. 35:167-192 (1988).Google Scholar
  17. 17.
    M. J. Pikal. The role of electroosmotic flow in transdermal iontophoresis. Adv. Drug Del. Rev. 9:201-237 (1992).Google Scholar
  18. 18.
    W. D. Munch, L. P. Zestar, and J. L. Anderson. Rejection of polyelectrolytes from microporous membranes. J. Membr. Sci. 5:77-102 (1979).Google Scholar
  19. 19.
    R. R. Burnette and D. Marrero. Comparison between the iontophoretic and passive transport of thyrotropin releasing hormone across excised nude mouse skin. J. Pharm. Sci. 75:738-743 (1986).PubMedGoogle Scholar
  20. 20.
    J. Hirvonen and R. H. Guy. Iontophoretic delivery across the skin: electroosmosis and its modulation by drug substances. Pharm. Res. 14:1258-1263 (1997).PubMedGoogle Scholar
  21. 21.
    O. Siddiqui, M. S. Roberts, and A. E. Polack. Iontophoretic transport of weak electrolytes through the excised human stratum corneum. J. Pharm. Pharmacol. 41:430-432 (1989).PubMedGoogle Scholar
  22. 22.
    R. D. Purves. Accuracy of numerical inversion of Laplace transforms for pharmacokinetic parameter estimation. J. Pharm. Sci. 84:71-74 (1995).PubMedGoogle Scholar
  23. 23.
    S. K. Li, A.-H. Ghanem, K. D. Peck, and W. I. Higuchi. Iontophoretic transport across a synthetic membrane and human epidermal membrane: a study of the effects of permeant charge. J. Pharm. Sci. 86:680-689 (1997).PubMedGoogle Scholar
  24. 24.
    B. H. Sage, R. A. Hoke, A. C. McFarland, and K. Kowalczyk. The importance of skin pH in the iontophoresis of peptides. In K. R. Brain, J. Hadgraft, V. J. James, and K. A. Walters (eds), Prediction of Percutaneous Penetration Vol. 3B, 1993.Google Scholar
  25. 25.
    Y. W. Chien, O. Siddiqui, W.-M. Shi, P. Lelawongs, and J.-C. Liu. Direct current iontophoretic transdermal delivery of peptide and protein drugs. J. Pharm. Sci. 78:376-383 (1989).PubMedGoogle Scholar
  26. 26.
    S. S. Kamath and L. P. Gangarosa, Sr. Electrophoretic evaluation of the mobility of drugs suitable for iontophoresis. Meth. Find. Exp. Clin. Pharmacol. 17:227-232 (1995).Google Scholar
  27. 27.
    M. Polásek, B. Gas, T. Hirokawa, and J. Vacik. Determination of limiting ionic mobilities and dissociation constants of some local anaesthetics. J. Chromatograph. 596:265-270 (1992).Google Scholar
  28. 28.
    M. A. Schwarz, R. H. H. Neubert, and H. H. Rüttinger. Application of capillary electrophoresis for characterizing interactions between drugs and bile salts. Part I. J. Chromatograph. A. 745:135-143 (1996).Google Scholar
  29. 29.
    P. Gebauer, J. Caslavska, W. Thormann, and P. Bocek. Prediction of zone patterns in capillary zone electrophoresis with conductivity detection. Concept of the zone conductivity diagram. J. Chromatograph. A. 772:63-71 (1997).Google Scholar
  30. 30.
    A. Leo, C. Hansch, and D. Elkins. Partition coefficients and their uses. Chem. Rev. 71:525-616 (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Michael S. Roberts
    • 1
  • Pamela M. Lai
    • 1
  • Yuri G. Anissimov
    • 1
  1. 1.Department of MedicineUniversity of Queensland, Princess Alexandra HospitalBrisbaneAustralia

Personalised recommendations