Studia Logica

, Volume 68, Issue 1, pp 129–142 | Cite as

Fuzzy Logic and Arithmetical Hierarchy III

  • Petr Hájek


Fuzzy logic is understood as a logic with a comparative and truth-functional notion of truth. Arithmetical complexity of sets of tautologies (identically true sentences) and satisfiable sentences (sentences true in at least one interpretation) as well of sets of provable formulas of the most important systems of fuzzy predicate logic is determined or at least estimated.

fuzzy logic basic fuzzy logic Łukasiewicz logic Gödel logic product logic arithmetical hierarchy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Baaz, M., 'Infinite-valued Gödel logics with 0-1 projections and relativization',in Gödel '96, P. Hájek (ed.), L N in logic 6, Springer Verlag 1996, 23-33.Google Scholar
  2. [2]
    Baaz, M., P. HÁjek, F. Montagna, H. Veith, 'Complexity of t-tautologies', to appear in Annals of Pure and Applied Logic.Google Scholar
  3. [3]
    Cignoli, R., I. M. L. d'Ottaviano, D. Mundici D, Algebraic Foundations of Manyvalued Reasoning, Kluwer 2000.Google Scholar
  4. [4]
    Cignoli, R., F. Esteva, L. Godo, A. Torrens, 'Basic fuzzy logic is the logic of continuous t-norms and their residua', Soft Computing 4 (2000) 106-112.Google Scholar
  5. [5]
    Esteva, F., L. Godo, P. HÁjek, M. Navara, 'Residuated logics with an involutive negation', Arch. Math. Logic.Google Scholar
  6. [6]
    Esteva, F., L. Godo, F. Montagna, 'The LΠ and LΠ1/2 logics: two complete systems joining ?ukasiewicz and product logic', to appear in Arch. Math. Logic.Google Scholar
  7. [7]
    HÁjek, P., 'Fuzzy logic and arithmetical hierarchy', Fuzzy Sets and Systems 73,3 (1995), 359-363.Google Scholar
  8. [8]
    HÁjek, P., 'Fuzzy logic and arithmetical hierarchy II', Studia Logica 58 (1997), 129-141.Google Scholar
  9. [9]
    HÁjek, P., Metamathematics of Fuzzy Logic, Kluwer 1998.Google Scholar
  10. [10]
    HÁjek, P., 'Mathematical fuzzy logic-state of art', in Proc. Logic Colloquium '98, Buss at al. (ed.), Association for Symbolic Logic 2000.Google Scholar
  11. [11]
    HÁjek, P., 'Basic fuzzy logic and BL-algebras', Soft Computing 2 (1998),124-128.Google Scholar
  12. [12]
    HÁjek, P., P. PudlÁk, Metamathematics of Arithmetic, Springer 1993.Google Scholar
  13. [13]
    Montagna. F., 'Three complexity problems in quantified fuzzy logic', Studia Logica 68 (2001),143-152.Google Scholar
  14. [14]
    Ragaz, M.E., 'Arithmetische Klassifikation von Formelnmengen der unendlichwertigen Logik', ETH Zürich, 1981,Thesis.Google Scholar
  15. [15]
    Rogers Jr., H., Theory of Recursive Functions and Effective Computability, McGraw-Hill, 1967.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Petr Hájek
    • 1
  1. 1.Institute of Computer ScienceAcademy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations