, Volume 452, Issue 1–3, pp 163–171 | Cite as

Satellite tracking of a fin whale (Balaenoptera physalus) in the north-western Mediterranean Sea and fractal analysis of its trajectory

  • David Mouillot
  • Denise Viale


Satellite tracking of whales was the aim of the ARGOCET program in the western Mediterranean Sea. With the tracking technology and the development of telemetry, we can study large mammals under natural conditions. In 1991, a satellite tracking during 42 days on a fin whale (Balaenoptera physalus) was obtained. The Argos system allowed us to know the location of this tagged fin whale 263 times. In this study, we can distinguish two kinds of movements: linear segments and tortuous segments with loops drawn in a clockwise direction. Such loops may be superficial oscillations of inertia due to the inertia of the water mass combined with earth's rotation. With this trial study, which is the best we have obtained, we can estimate the fractal dimension d of this trajectory at different observation scales. These d values seem to be scale-independent, so the fin whale path is fractal-like or scale-independent. Fractal dimension, which is a scale-independent measure, summarizes interactions between an organism and its ecosystem and depends on the heterogeneity of the whale's environment (exogeneous factors) and the whale's ability to perceive it (endogeneous factors). For the fin whale trajectory we calculated d = 1.03 +/−0.01 with the divider method. The aggregated distribution of available resources for the fin whale in the western Mediterranean Sea can explain this result close to 1. The heterogeneity of this food resources is not a `measured heterogeneity' but is a `functional heterogeneity'. The low fractal dimension also points to the low probability that the tagged fin whale and the zooplankton aggregates will meet in the western Mediterranean Sea so the fin whale must cover long straight lines from one patch of available zooplankton to another.

Argos location prey-predator relationship zooplankton patchiness functional heterogeneity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Buskey, E. J., 1984. Swimming pattern as an indicator of the roles of copepod sensory systems in the recognition of food. Mar. Biol. 79: 165–175.Google Scholar
  2. Cassie, R. M., 1963. Microdistribution of plankton. Oceanog. mar. biol. Ann. Rev. 1: 223–252.Google Scholar
  3. Costa, D. P., D. E. Crocker, B. J. LeBoeuf & P. Webb, 1996. Foraging behavior of Northern elephant seals using time depth recorders coupled with Argos satellite locations. Pages SX 4. Fifth European Conference on Wildlife Telemetry. Strasbourg, France.Google Scholar
  4. Dicke, M. & P. A. Burrough, 1988. Using fractal dimensions for characterizing the tortuosity of animal trails. Physiol. Entomol. 118: 313–326.Google Scholar
  5. Disciara, G. N., M. C. Venturino, M. Zanardelli, G. Bearzi, F. J. Borsani & B. Cavalloni, 1993. Cetaceans in the central Mediterranean Sea – Distribution and sighting frequencies. Bollettino di Zool. 60: 131–138.Google Scholar
  6. Fasham, M. J. R., 1978. The statistical and mathematical analysis of plankton patchiness. Oceanog. mar. biol. Ann. Rev. 16: 43–79.Google Scholar
  7. Forcada, J., A. Aguilar, P. Hammond, X. Pastor & R. Aguilar, 1996. Distribution and abundance of fin whales (Balaenoptera physalus) in the western Mediterranean Sea during summer. J. Zool. 238: 23–34.Google Scholar
  8. Frontier, S., 1973. Etude statistique de la dispersion du zooplankton. J. exp. mar. Biol. Ecol. 12: 229–262.Google Scholar
  9. Frontier, S. & D. Pichod-Viale, 1993. Ecosystèmes: structure, Fonctionnement et évolution. Masson, Paris.Google Scholar
  10. Gannier, A., 1997. Estimation of summer abundance of the fin whale Balaenoptera physalus (Linne, 1758) in the Liguro-Provencal basin (West Mediterranean). Revue d'Ecologie-La Terre et la Vie 52: 69–86.Google Scholar
  11. Gannier, A., 1998. Seasonal variation of the bathymetric distribution of cetaceans in the Liguro-Provencal basin (Western Mediterranean). Life & Envir. 48: 25–34.Google Scholar
  12. Gisiner, R., D. Martin & B. Mate, 1996. A river of song: acoustic tracking of migrating humpback whales. European Cetacean Society Congres. Lisbonne, Portugal: 240–254.Google Scholar
  13. Haury, L. R., J. A. McGowan & P. H. Wiebe, 1978. Patterns and processes in the time-space scales of plankton distribution. In Steele, J. H. (ed.), Spatial Pattern in Plankton Communities. Mar. Sci. (Plenum): 277–337.Google Scholar
  14. Jonsgârd, A., 1966. Biology of the North Atlantic Fin whale Balaenoptera physalus, distribution, migration and food. Hvalradets Skrifter 40: 1–62.Google Scholar
  15. Kingsley, M. C. S., A. R. Martin, P. R. Richard & T. G. Smith, 1996. Studies of Monodontid behaviour in the Canadian Arctic using satellite telemetry. Pages SX 2. Fifth European Conference on Wildlife Telemetry. Strasbourg, France.Google Scholar
  16. Kolasa, J. & C. D. Rollo, 1991. Introduction: the heterogeneity of heterogeneity: a glossary. In Kolasa, J. & S. T. A. Pickett (eds), Ecological Heterogeneity. Springer-Verlag, New York: 1–23.Google Scholar
  17. Levy, D. A., 1990. Reciprocal diel vertical migration behavior in planktivores and zooplankton in British Columbia lakes. Can. J. Fish. aquat. Sci. 47: 1755–1764.Google Scholar
  18. Mandelbrot, B. B., 1977. Fractals, Form, Chance and Dimension. Freeman, San Francisco.Google Scholar
  19. Mandelbrot, B. B., 1983. The Fractal Geometry of Nature. Freeman, San Francisco.Google Scholar
  20. Mate, B., 1983. Tracking of whales. In ARGOS Newsletter, ARGOS Users Conference, London 19: 1–2.Google Scholar
  21. Millot, C. & M. Crépon, 1981. Inertial oscillations on the continental shelf of the Gulf of Lions. Observation and Theory. J. Phys. Oceanogr. 11(5): 639–657.Google Scholar
  22. Milne, B. T., 1988. Measuring the fractal geometry of landscapes. Appl. Math. Comp. 27: 67–79.Google Scholar
  23. Milne, B. T., 1991. Lessons for applying fractal models to landscape patterns. In Turner, M. G. & R. H. Gardner (eds), Quantitative Methods in Landscape Ecology. Springer-Verlag, New York: 199–235.Google Scholar
  24. Nams, V. O., 1996. The Vfractal: a new estimator for fractal dimension of animal movement paths. Landscape Ecol. 11: 289–297.Google Scholar
  25. Noda, M., K. Kawabata, K. Gushima & S. Kakuda, 1992. Importance of zooplankton patches in foraging ecology of the planktivorous fish Chromis chysurus (Pomacentridae) at Kuchinoerabu Island, Japan. Mar. Ecol. Prog. Ser. 87: 251–263.Google Scholar
  26. Panigada, S., M. Zanardelli, S. Canese & M. Jahoda, 1999. How deep can baleen whales dive? Mar. Ecol. Prog. Ser. 187: 309–311.Google Scholar
  27. Pietgen, H. & D. Saupe, 1988. The Science of Fractal Images. Springer-Verlag, New York.Google Scholar
  28. Pinel-Alloul, B., 1995. Spatial heterogeneity as a multiscale characteristic of zooplankton community. Hydrobiologia 300/301: 17–42.Google Scholar
  29. Price, H. J., 1989. Swimming behavior of krill in responses to algal patches: a mesocosm study. Limnol. Oceanogr. 34: 649–659.Google Scholar
  30. Simard, Y. & D. L. Mackas, 1989. Mesoscale aggregations of euphausiids sound scattering layers on the continental shelf of Vancouver Island. Can. J. Fish. aquat. Sci. 46: 1238–1249.Google Scholar
  31. Stanley, H. E., 1986. Form: an introduction to self-similarity and fractal behavior. In Stanley, H. E. & N. Ostrowski (eds), On Growth and Form: Fractal and Non-Fractal Patterns in Physics. Martinus Nijhoff, Boston: 21–53.Google Scholar
  32. Thiery, D. & J. H. Visser, 1987. Misleading the Colorado potato beetle with an odor blend. J. Chem. Ecol. 13: 1139–1146.Google Scholar
  33. Tiselius, P., 1992. Behavior of Acartia tonsa in patchy food environments. Limnol. Oceanogr. 37: 1640–1651.Google Scholar
  34. Turchin, P., 1996. Fractal analysis of animal movement – a critique. Ecology 77: 2086–2090.Google Scholar
  35. Viale, D., 1985. Cetaceans in the Northwestern Mediterranean: their place in the ecosystem. Oceanogr. mar. Biol. Ann. Rev. 23: 491–571.Google Scholar
  36. Viale, D. & P. Pistek, 1988. Correspondence between surface macrofauna and deep scattering layers in relation to the Western Mediterranean circulation. In WMCE Newsletter, Western Mediterranean Circulation Experiment Symposium, Bay St. Louis, U.S.A. 11: 69.Google Scholar
  37. Viale, D. & S. Frontier, 1994. Surface Megafauna related toWestern Mediterranean circulation. Aquat. Liv. Res. 7(2): 105–126.Google Scholar
  38. Viale, D., N. Terris, J. P. Frodello & D. Mouillot, 1996. A fin whale tracked by Argos PTT: use of space and feeding ground search behavior. Pages SX 4. Fifth European Conference on Wildlife Telemetry. Strasbourg, France.Google Scholar
  39. Waage, J. K., 1978. Arrestment responses of the parasitoid, Nemeritis canescens, to a contact chemical produced by its host, Plodia interpuctella. Physiol. Entomol. 3: 135–146.Google Scholar
  40. Watkins, W. A., J. Sigurjonsson, D. Wartzok, R. F. Maiefski, P. W. Howey & M. A. Daher, 1996. Fin whale tracked by satellite off Iceland. Mar. Mammal Sci. 12: 564–569.Google Scholar
  41. Wiens, J. A. & B. T. Milne, 1989. Scaling of landscapes in landscape ecology, or, landscape ecology from a beetle's perspective. Landscape Ecol. 3(2): 87–96.Google Scholar
  42. Wiliamson, C. E., 1981. Foraging behavior of a freshwater copepod: frequency changes in looping behaviour at high and low prey densities. Oecologia 50: 332–336.Google Scholar
  43. Wiliamson, C. E., 1993. Linking predation risk models with behavioral mechanisms: identifying population bottlenecks. Ecology 74: 320–331.Google Scholar
  44. Williams, T. M., B. Leboeuf, R. Davis, D. Cocker & R. Skrovan, 1996. Integrating behaviour and energetics in diving marine mammals: new views using video technology. Pages SX 6. Fifth European Conference onWildlife Telemetry. Strasbourg, France.Google Scholar
  45. With, K. A., 1994. Using fractal analysis to assess how species perceive landscape structure. Landscape Ecol. 7: 25–36.Google Scholar
  46. Zar, J. H., 1984. Biostatistical analysis. Prentice-Hall International Editions, Englewood Cliffs.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • David Mouillot
    • 1
  • Denise Viale
    • 2
  1. 1.Laboratoire Parasites et Ecosystèmes MéditerranéensUniversité de CorseCorteFrance
  2. 2.Laboratoire Parasites et Ecosystèmes MéditerranéensUniversité de CorseCorteFrance

Personalised recommendations