Advertisement

Differential Equations

, Volume 37, Issue 7, pp 934–942 | Cite as

Convergence Analysis of Iterative Methods for Some Variational Inequalities with Pseudomonotone Operators

  • I. B. Badriev
  • O. A. Zadvornov
  • A. M. Saddek
Article

Keywords

Differential Equation Partial Differential Equation Ordinary Differential Equation Functional Equation Variational Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Lyashko, A.D. and Karchevskii, M.M., Izv. Vyssh. Uchebn. Zaved. Matematika, 1975, no. 6, pp. 73–81.Google Scholar
  2. 2.
    Badriev, I.B. and Karchevskii, M.M., in Issledovaniya po prikladnoi matematike (Investigations in Applied Mathematics), Kazan, 1990, issue 17, pp. 3–15.Google Scholar
  3. 3.
    Glushenkov, V.D., in Prikl. matematika v nauchno-tekhn. zadachakh (Applied Mathematics in Scientific-Technical Problems), Kazan, 1976, pp. 12–21.Google Scholar
  4. 4.
    Badriev, I.B. and Karchevskii, M.M., Differents. Uravn., 1982, vol. 18, no. 7, pp. 1133–1144.Google Scholar
  5. 5.
    Badriev, I.B. and Zadvornov, O.A., Differents. Uravn., 1996, vol. 32, no. 7, pp. 898–901.Google Scholar
  6. 6.
    Badriev, I.B. and Zadvornov, O.A., in Issledovaniya po prikladnoi matematike (Investigations in Applied Mathematics), Kazan, 1997, issue 22, pp. 5–17.Google Scholar
  7. 7.
    Lyashko, A.D., Badriev, I.B., and Karchevskii, M.M., Izv. Vyssh. Uchebn. Zaved. Matematika, 1978, no. 11, pp. 63–69.Google Scholar
  8. 8.
    Lapin, A.V., Zh. Vychislit. Mat. Mat. Fiz., 1979, vol. 19, no. 3, pp. 689–700.Google Scholar
  9. 9.
    Ridel', V.V. and Gulin, B.V., Dinamika myagkikh obolochek (Dynamics of Soft Shells), Moscow, 1990.Google Scholar
  10. 10.
    Badriev, I.B. and Shagidullin, R.R., Izv. Vyssh. Uchebn. Zaved. Matematika, 1992, no. 1, pp. 8–16.Google Scholar
  11. 11.
    Gajewskii, H., Gröger, K., and Zacharias, K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Berlin: Akademie-Verlag, 1974. Translated under the title Nelineinye operatornye uravneniya i operatornye differentsial'nye uravneniya, Moscow: Mir, 1978.Google Scholar
  12. 12.
    Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites nonlinéaires, Paris: Dunod, 1969. Translated under the title Nekotorye metody resheniya nelineinykh kraevykh zadach, Moscow: Mir, 1972.Google Scholar
  13. 13.
    Ekeland, I. and Temam, R., Convex Analysis and Variational Problems, Amsterdam: North-Holland, 1976. Translated under the title Vypuklyi analiz i variatsionnye problemy, Moscow, 1979.Google Scholar
  14. 14.
    Glowinski, R., Lions, J.-L., and Tremolieres, R., Analyse numerique des inequations variationnelles, Tome 1, 2, Paris: Dunod, 1976. Translated under the title Chislennoe issledovanie variatsionnykh neravenstv, Moscow, 1979.Google Scholar
  15. 15.
    Resolution numeriques de problèmes aux limites par des méthodes de Lagrangien augment, Fortin, M., Glowinski, R., Eds., Paris, 1983.Google Scholar
  16. 16.
    Maruster, S., Proc. Amer. Math. Soc., 1977, vol. 63(1), pp. 69–73.Google Scholar
  17. 17.
    Opial, Z., Bull. Amer. Math. Soc., 1967, vol. 73, pp. 591–597.Google Scholar
  18. 18.
    Skrypnik, I.V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach (Methods for Studying Nonlinear Elliptic Boundary Value Problems), Moscow, 1990.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • I. B. Badriev
    • 1
  • O. A. Zadvornov
    • 1
  • A. M. Saddek
    • 1
  1. 1.Kazan State UniversityKazanRussia

Personalised recommendations