Environmental Biology of Fishes

, Volume 62, Issue 1–3, pp 263–275 | Cite as

A review of Morphological and Behavioural Changes in the Cave Molly, Poecilia Mexicana, from Tabasco, Mexico

  • Jakob Parzefall


The poeciliid fish Poecilia mexicana successfully colonised a sulfur cave in Tabasco, Mexico. The eye size, melanin pigmentation and scale tuberances as well as aggressive and schooling behaviour are reduced in the cave fish. Besides these regressive characters some constructive ones have been found. The genital region of the female is enlarged to a genital pad and in both sexes the number of taste buds is considerably increased on the upper side of the head. The cephalic lateral line shows a hyperdevelopment with an incomplete covering of some channels. Nearly all of these characters studied form a genetically based gradient from the beginning to the end of the cave, which seems to be the result of gene flow from the outside to the inner part of the cave. A special behavioural adaptation was found among females which prefer bigger males during courtship. In darkness, only the cave females show this preference.

regressive evolution behaviour biospeology fish ecology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bechler, D. 1983. The evolution of agonistic behaviour in amblyopsid fishes. Behav. Ecol. Sociobiol. 12: 35–42.Google Scholar
  2. Bisazza, A. & A. Pilastro. 1997. Small male mating advantage and reversed size dimorphism in poeciliid fishes. J. Fish Biol. 50: 397–406.Google Scholar
  3. Egemeier, S.J. 1981. Cavern development by thermal waters with a possible bearing on ore deposition. Nat. Speleol. Soc. Bull. 43: 31–51.Google Scholar
  4. Ercolini, A., R. Berti & A. Cianfanelli. 1981. Aggressive behaviour in Uegitglanis zammaronoi Gianferrari (Clariidae, Siluriformes) an anophtalmic phreatic fish from Somalia. Monit. Zool. Ital. 5: 39–56.Google Scholar
  5. Gordon, M.S. & D.E. Rosen. A cavernicolous form of the poeciliid fish Poecilia sphenops from Tabasco, Mexico. Copeia 1962: 360–368.Google Scholar
  6. Hausberg, C. 1995. Das Aggressionsverhalten von Astyanax fasciatus (Characidae, Teleostei): Zur Ontogenie, Genetik und Evolution der epigÄischen und hypogÄischen Form. Doctoral Dissertation, University of Hamburg, Hamburg. 137 pp.Google Scholar
  7. Hose, L. & J.A. Pisarowicz. 1999. Cueva de Villa Luz, Tabasco, Mexico: reconnaissance study of an active sulfur spring cave and ecosystem. J. Cave Karst Stud. 61: 13–21.Google Scholar
  8. Hüppop, K. 1987. Food finding ability in cave fish (Astyanax fasciatus). Int. J. Speleol. 16: 59–66.Google Scholar
  9. Körner, K.E. 1999. Zur sexuellen Selektion höhlenlebender Atlantikk#x00E4;rpflinge (Poecilia mexicana Steindachner 1863). Verlag Dissertation, Berlin. 104 pp.Google Scholar
  10. Langecker, G., H. Wilkens & J. Parzefall. 1996. Studies on the trophic structure of an energy-rich Mexican cave (Cueva del Azufre) containing sulfurous water. M0ém. Biospéol. 23: 121–127.Google Scholar
  11. Latella, L., M. Cobolli & M. Rampini.1999a. La fauna delle grotte nei gessi dell'Alto Crotonese (Calabria) (Cave fauna of Alto Crotonese). Thalassia Salentina 23: 103–113.Google Scholar
  12. Latella L., C. Di Russo, L. De Pasquale, L. Dell'anna, G. Nardi & M. Rampini. 1999b. Preliminary investigations on a new sulphurous cave in central Italy. Mém. Biospéol. 53: 131–135.Google Scholar
  13. Partidge, B.L. & T.J. Pitcher. 1980. The sensory basis for fish schools: relative roles of lateral line and vision. J. Comp. Physiol. A 162: 543–550.Google Scholar
  14. Parzefall, J. 1969. Zur vergleichenden Ethologie verschiedener Molliensesia-arten einschlieβlich einer Höhlenform von Mollienesia sphenops. Behaviour 33: 1–37.Google Scholar
  15. Parzefall, J. 1970. Morphologische Untersuchungen an einer H¨ohlenform von Mollienesia sphenops (Pisces Poeciliidae). Z. Morph. Tiere 68: 323–342.Google Scholar
  16. Parzefall, J. 1973. Attraction and sexual cycle of poeciliids. pp. 177–183. In: J.H. Schröder (ed.) Genetics and Mutagenesis of Fish, Springer Verlag, Berlin.Google Scholar
  17. Parzefall, J. 1974. Rückbildung aggressiver Verhaltensweisen bei einer H¨ohlenform von Poecilia sphenops (Pisces, Poeciliidae). Z. Tierpsychol. 35: 66–84.Google Scholar
  18. Parzefall, J. 1979. Zur Genetik und biologischen Bedeutung des Aggressionsverhaltens von Poecilia sphenops (Pisces, Poeciliidae). Untersuchungen an Bastarden ober-und unterirdisch lebender Populationen. Z. Tierpsychol. 50: 399–422.Google Scholar
  19. Parzefall, J. 1982. Changement of behaviour during the evolution of cave animals. Mém. Biospéol. 8: 55–62.Google Scholar
  20. Parzefall, J. 1993. Schooling behaviour in population-hybrids of Astyanax fasciatus and Poecilia mexicana (Pisces, Characidae and Poeciliidae). pp. 297–303. In: J.H. Schröder & J. Bauer (ed.) Trends in Ichthyology: An International Perspective, GSF-Forschungszentrum f¨ur Umwelt und Gesundheit in association with Blackwell Scientific, Oxford.Google Scholar
  21. Parzefall, J. 2000. Ecological role of aggression in the dark. pp. 221–228. In: H. Wilkens, D. Culver & B. Humphreys (ed.) Ecosystems of the World – Subterranean Biota, Elsevier, Amsterdam.Google Scholar
  22. Parzefall, J., U. Gagelmann & M. Schartl. 1997. Aggressive behaviour and optomotor response in different populations of P. mexicana (Pisces, Poecilidae). Mùm. BiospÙol. 24: 63–69.Google Scholar
  23. Peters, N. & G. Peters. 1968. Zur genetischen Interpretation morphologischer Gesetzmäβigkeiten der degenerativen Evolution. Z. Morph. Tiere 62: 211–244.Google Scholar
  24. Peters, N., G. Peters, J. Parzefall & H. Wilkens. 1973. Über degenerative und konstruktive Merkmale bei einer phylogenetisch jungen Höhlenform von Poecilia sphenops (Pisces, Poeciliidae). Int. Revue ges. Hydrobiol. 58: 17–436.Google Scholar
  25. Sarbu, S.M., T.C. Kane & B.K. Kinkle. 1995. A chemoautotropically based cave ecosystem. Science 272: 1953–1955.Google Scholar
  26. Schemmel, C. 1967. Vergleichende Untersuchungen an Hautsinnesorganen ober-und unterirdisch lebender Astyanax-Formen. Z. Morph. Tiere 61: 255–316.Google Scholar
  27. Schemmel, C. 1980. Studies on the genetics of feeding behaviour in the cave fish Astyanax mexicanus f. anoptichthys. Z. Tierpsychol. 53: 9–22.Google Scholar
  28. Southward, A.J., M.C. Kennicut II, J. Alcala-Herrera, M. Abbiati, L. Airoldi, F. Cinelli, C.N. Bianchi Morri & E.C. Soutward. 1996. On the biology of submarine caves with sulfur springs: appraisal of 13C/12C ratios as a guide to trophic relations. J. Mar. Biol. Assoc. 76: 265–285.Google Scholar
  29. Taborsky, M. 1994. Sneakers, satellites and helpers: parasitic and cooperative behavior in fish reproduction. pp. 1–100. In: P.J.P. Slater, J.S. Rosenblatt, C.T. Snowdon & M. Milinski (ed.) Advances in Study of Behavior 23, Academic Press, San Diego.Google Scholar
  30. Trajano, E. 1991. The agonisitc behaviour of Pimelodella kronei, a troglobitic catfish from southeastern Brazil (Siluriformes, Pimelodidae). Behav. Processes 23: 113–124.Google Scholar
  31. Walters, L.H. & V.W. Walters. 1965. Laboratory observations on a cavernicolous poeciliid from Tabasco, Mexico. Copeia 1965: 214–233.Google Scholar
  32. Wilkens, H. 1986. The tempo of regressive evolution: studies of the eye reduction in stygobiont fishes and decapod crustaceans of the Gulf Coast and West Atlantic region. Stygologica 2: 130–143.Google Scholar
  33. Wilkens, H. 1987. Genetic analysis of evolutionary processes. Int. J. Spel. 16: 33–57.Google Scholar
  34. Wilkens, H. 1988. Evolution and genetics of epigean and cave Astyanax fasciatus (Characidae, Pisces). Evol. Biol. 23: 271–367.Google Scholar
  35. Zeiske, E. 1968. Prädispositionen bei Mollienesia sphenops (Pisces, Poeciliidae) für einen Übergang zun Leben in subterrranen Gewässern. Z. vergl. Physiol. 58: 190–222.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Jakob Parzefall
    • 1
  1. 1.Zoologisches Institut und Zoologisches Museum der UniversitätHamburgGermany

Personalised recommendations