New Forests

, Volume 21, Issue 2, pp 127–140 | Cite as

Effect of water stress conditioning on morphology, physiology and field performance of Pinus halepensis Mill. seedlings

  • Antonio Royo
  • Luis Gil
  • José A. Pardos
Article

Abstract

Five-month-old Pinus halepensis Mill. seedlings were subjected to 4 irrigation treatments for 8 weeks. After the treatments, morphological and physiologicalattributes assessed included height, diameter, dry weight, water relations parameters, and determination of N, P, K, soluble carbohydrates, and starch concentrations. The remaining seedlings were field planted. Survival and height growth were recorded forfour growing seasons after planting. The mostsignificant effect of irrigation was onmorphology. Increased irrigation lead toseedlings with significantly higher height,root collar diameter and shoot and rootbiomass. Starch and soluble carbohydrateconcentrations were also affected byirrigation. However, parameters derived frompressure-volume curves were not significantlydifferent among treatments, nor were N, P, andK concentrations. There were no differencesamong treatments for survival in the field,which was highly related to summer rainfall. Incomparison, absolute and relative heightgrowth showed some significant but minordifferences among treatments.

Aleppo pine morphology non-structural carbohydrates nursery irrigation osmotic adjustment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alegría A., Ayala J.L., Fuente A., Iglesias A., MuÑoz J. and Segovia J.A. 1975. Plantación manual de resinosas a raíz desnuda, pp. 107–114. In: Navarro Garnica, M. (Ed) Técnicas de forestación. Ministerio Agricultura, ICONA.Google Scholar
  2. Allen, S.E. (Ed) 1974. Chemical Analysis of Ecological Materials. John Wiley & Sons, New York. 273 p.Google Scholar
  3. Alloza, J.A., Fuentes, D., Arnau, E., Boix, M. and Fernández, B. 1998. Seguimiento de repoblaciones forestales. Reunión de coordinación del Programa I+D Forestal, Fundación CEAM: 36–46.Google Scholar
  4. Arnott, J.T., Grossnickle, S.C., Puttonen, P., Mitchell, A.K. and Folk, R.S. 1993. Influence of nursery culture on growth, cold hardiness, and drought resistance of yellow cypress. Can. J. For. Res. 23: 2537–2547.Google Scholar
  5. Blake, J., Zaerr, J. and Hee, S. 1979. Controlled moisture stress to improve cold hardiness and morphology of Douglas-fir seedlings. For. Sci. 25(4): 576–582.Google Scholar
  6. Brisette, J.C., Barnett, J.P. and Landis, T.D. 1991. Container seedlings, pp. 117–141. In: Duryea, M.L. and Dougherty, P.M. (Eds) Forest Regeneration Manual. Kluwer Academic Publishers, Dordrecht/Boston/London.Google Scholar
  7. Cannell, M.G.R. 1985. Physiology of southern pine seedlings, pp. 251–273. In: South, D.B. (Ed) Proceedings of the International Symposium on Nursery Management Practices for the Southern Pines, Alabama.Google Scholar
  8. Duryea, M.L. 1984. Nursery cultural practices: Impacts on seedling quality, pp. 143–164. In: Duryea, M.L. and Landis, T.D. (Eds) Forest Nursery Manual: Production of Bareroot Seedlings. Martinus Nijhoff/Dr. W. Junk Publishers, The Hague, Boston, Lancaster.Google Scholar
  9. Gil, L., Díaz-Fernández, P.M., Jiménez, M.P., Roldán, M., Alía, R., AgÚndez, D., Miguel, J., Martín, S. and Tuero, M. 1996. La regiones de procedencia de Pinus halepensis Mill. en EspaÑa. Organismo Autónomo de Parques Nacionales. Ministerio de Medio Ambiente, Madrid. 112 p.Google Scholar
  10. Haase, D.L and Rose, R.W. 1993. Soil moisture stress induces transplant shock in stored and unstored 2+0 Douglas-fir seedlings of varying root volumes. For. Sci. 39(2): 275–294.Google Scholar
  11. Helgerson, O.T., Tesch, S.D., Hobbs, S.D. and McNabb, D.H. 1985. Survival and growth of ponderosa pine and Douglas-fir stocktypes on a dry low-elevation site in southwest Oregon. Western J. of Applied Forestry 4(4): 124–128.Google Scholar
  12. Johnson, J.D., Seiler, J.R. and McNabb, K.L. 1985. Manipulation of pine seedling physiology by water stress conditioning, pp. 290–302. In: South, D.B. (Ed) Proc. Int. Symp. Nursery Manag. Practices for the Southern Pines, Alabama.Google Scholar
  13. Khan, S.R., Rose, R.W., Haase, D.L. and Sabin, T.E. 1996. Soil water stress: Its effects on phenology, physiology, and morphology of containerized Douglas-fir seedlings. New Forests 12: 19–39.Google Scholar
  14. Koide, R.T., Robichaux, R.H., Morse, S.R. and Smith, C.M. 1989. Plant water status, hydraulic resistance and capacitance, pp. 161–183. In: Pearcy, R.W., Ehleringer, J.R., Mooney, H.A. and Rundel, P.W. (Eds) Plant Physiological Ecology. Field Methods and Instrumentation. Chapman and Hall, London, New York.Google Scholar
  15. Landis, T.D., Tinus, R.W., McDonald, S.E. and Barnett, J.P. 1989. Seedling nutrition and irrigation. The container tree nursery manual, volume 4. Agric. Handbook. 674. USDA Forest Service, Washington, DC. 119 p.Google Scholar
  16. Lavender, D.P. and Cleary, B.D. 1974. Coniferous seedling production techniques to improve seedling establishment, pp. 177–180. In: Tinus, R.W., Stein, W.I. and Balmer, W.E. (Eds) Proceedings of the North American Containerized Forest Tree Seedling Symposium. Great Plains Agricultural Research Publication 68.Google Scholar
  17. Leshem, B. 1970. Resting roots of Pinus halepensis: Structure, function, and reaction to water stress. Bot. Gaz. 131(2): 99–104.Google Scholar
  18. Marshall, J.D. 1985. Carbohydrate status as a measure of seedling quality, pp. 49–58. In: Duryea, M.L. (Ed) Evaluating Seedling Quality: Principles, Procedures, and Predictive Abilities of Major Tests. For. Res. Lab. OSU. Corvallis.Google Scholar
  19. Miliken, G.A. and Johnson, D.E. 1992. Analysis of Messy Data. Volume I: Designed Experiments. Chapman & Hall, London. 473 p.Google Scholar
  20. Robichaux, R.H. 1984. Variation in the tissue water relations of two sympatric Hawaiian Dubautia species and their natural hybrid. Oecologia (Berl.) 59: 344–350.Google Scholar
  21. Rose. R.W., Rose, C.L., Omi, S.K., Forry, K.R., Durall, D.M. and Bigg, W.L. 1991. Starch determination by Perchloric Acid vs Enzymes: Evaluating the accuracy and precision of six colorimetric methods. J. Agric. Food Chem. 39(1): 2–11.Google Scholar
  22. Ruiz de la Torre, J. 1979. Arboles y arbustos de la EspaÑa Peninsular. Escuela Técnica Superior de Ingenieros de Montes, Madrid. 512 p.Google Scholar
  23. Seiler, J.R. and Cazell, B.H. 1990. Influence of water stress on the physiology and growth of red spruce seedlings. Tree Physiol. 6: 69–77.Google Scholar
  24. Seiler J.R. and Johnson J.D. 1985. Photosynthesis and transpiration of loblolly pine seedlings as influenced by moisture-stress conditioning. For. Sci. 31(3): 742–749.Google Scholar
  25. Seiler, J.R. and Johnson, J.D. 1988. Physiological and morphological responses of three halfsib families of Loblolly pine to water-stress conditioning. For. Sci. 34(2): 487–495.Google Scholar
  26. Sluder, E.R. 1991. Seed and seedling size grading of slash pine has little effect on long-term growth of trees. Tree Planters' Notes 42(3): 23–27.Google Scholar
  27. Spiro, R.G. 1966. Analysis of sugars found in glycoproteins, pp. 3–26. In: Neufeld, E.F. and Ginsburg, V. (Eds) Methods in Enzymology, Vol. VIII, Complex Carbohydrates. Academic Press, New York.Google Scholar
  28. Stewart, J.D. and Lieffers, V.J. 1993. Preconditioning effects of nitrogen relative addition rate and drought stress on container-grown lodgepole pine seedlings. Can. J. For. Res. 23: 1663–1671.Google Scholar
  29. Timmer, V.R. and Armstrong, G. 1989. Growth and nutrition of containerized Pinus resinosa seedlings at varying moisture regimes. New Forests 3: 171–180.Google Scholar
  30. Timmer, V.R. and Miller, B.D. 1991. Effects of contrasting fertilization and moisture regimes on biomass, nutrients, and water relations of container grown red pine seedlings. New Forests 5: 335–348.Google Scholar
  31. Tognetti. R., Michelozzi, M. and Giovannelli, A. 1997. Geographical variation in water relations, hydraulic architecture and terpene composition of Aleppo pine seedlings from Italian provenances. Tree Physiol. 17: 241–250.Google Scholar
  32. van den Driessche, R. 1969. Influence of moisture supply, temperature, and light on frost hardiness changes in Douglas-fir seedlings. Can. J. Bot 47: 1765–1772.Google Scholar
  33. van den Driessche, R. 1991. Influence of container nursery regimes on drought resistance of seedlings following planting. I. Survival and growth. Can. J. For. Res. 21: 555–565.Google Scholar
  34. van den Driessche, R. 1992. Absolute and relative growth of Douglas-fir seedlings of different sizes. Tree Physiol. 10: 141–152.Google Scholar
  35. Villar, P., OcaÑa, L., PeÑuelas, J., Carrasco, I., Domínguez, S. and Renilla, I. 1997. Relaciones hídricas y potencial de formación de raíces en plántulas de Pinus halepensis Mill. sometidas a diferentes niveles de endurecimiento por estrés hídrico. Cuadernos de la SECF 4: 81–92.Google Scholar
  36. Zobel, D.B. 1996. Variation of water relations parameters with extended rehydration time, leaf form, season, and proportion of leaf. Can. J. For Res. 26: 175–185.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Antonio Royo
    • 1
  • Luis Gil
    • 1
  • José A. Pardos
    • 1
  1. 1.Departamento de Silvopascicultura, Escuela Técnica Superior de Ingenieros de MontesUniversidad Politécnica de MadridMadridSpain

Personalised recommendations