Environmental Biology of Fishes

, Volume 62, Issue 1–3, pp 297–313 | Cite as

Milyeringa Veritas (Eleotridae), a remarkably versatile Cave Fish from the Arid Tropics of Northwestern Australia

  • William F. Humphreys


The blind cave gudgeon Milyeringa veritas is restricted to groundwaters of Cape Range and Barrow Island, northwestern Australia. It occurs in freshwater caves and in seawater in anchialine systems. It is associated with the only other stygobitic cave vertebrate in Australia, the blind cave eel, Ophisternon candidum, the world's longest cave fish, and a diverse stygofauna comprising lineages with ‘tethyan’ tracks and widely disjunct distributions, often from North Atlantic caves. The cave gudgeon inhabits a karst wetland developed in Miocene limestones in an arid area. There is an almost complete lack of information on the basic biology of this cave fish, despite it being listed as threatened under the Western Australian Wildlife Conservation Act. Allozyme frequencies and distributions indicate significant population sub-structuring on the Cape Range peninsula such that the populations are essentially isolated genetically suggesting that more than one biological species is present. Further, they suggest that the vicariant events may have been associated with a series of eustatic low sealevels. Analysis of intestinal contents indicates that they are opportunistic feeders, preying on stygofauna and accidentals trapped in the water, at least at the sites sampled which were open to the surface, a conclusion supported by the results of stable isotope ratio analysis. The gudgeons are found in freshwater caves and throughout deep anchialine systems in which they occur in vertically stratified water columns in which there is a polymodal distribution of water chemistries (temperature, pH, salinity, dissolved oxygen, redox, dissolved inorganic nitrogen series, hydrogen sulphide).

stable isotope allozymes physico-chemical environment hydrogen sulphide anoxia food anchialine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M. & W.F. Humphreys. 1993. Patterns of genetic diversity within selected subterranean fauna of the Cape Range peninsula, Western Australia: systematic and biogeographic implications. Rec. West. Austr. Mus. (Suppl.) 45: 145–164.Google Scholar
  2. Allen, A.D. 1993. Outline of the geology and hydrogeology of Cape Range, Carnarvon Basin, Western Australia. Rec. West. Austr. Mus. (Suppl.) 45: 25–38.Google Scholar
  3. Allen, G.R. 1989. Freshwater fishes of Australia. T.F.H. Publications Inc., Neptune City. 240 pp.Google Scholar
  4. ANCA. 1996. A directory of important wetlands in Australia, 2nd edn. Australian Nature Conservation Agency, Canberra. 478 pp.Google Scholar
  5. Beard, J.S. 1975. Pilbara: vegetation survey ofWestern Australia 1: 1 000 000 vegetation series. Explanatory notes to sheet 5, the vegetation of the Pilbara area. University of Western Australia Press, Perth. 120 pp.Google Scholar
  6. Beard, J.S. 1998. Position and development history of the central watershed of the Western Shield, Western Australia. J. Roy. Soc. West. Austr. 81: 157–164.Google Scholar
  7. Bergstrom, D.E. 1997. The phylogeny and historical biogeography of Missouri's Amblyopsis rosae (Ozark cavefish) and Typhlichthys subterraneus (southern cavefish). M.Sc. Thesis, University of Missouri–Columbia, Columbia. 62 pp.Google Scholar
  8. Boulton, A.J. 2000. The subsurface macrofauna. pp. 337–361. In: J. Jones & P. Mulholland (eds), Streams and Ground Waters, Academic Press, New York.Google Scholar
  9. Chappell, J. & B.G. Thom. 1977. Sea levels and coasts. pp. 275–291. In: J. Allen, J. Golson & R. Jones (ed.) Sunda and Sakul: Prehistoric Studies in Southeast Asia, Melanesia & Australia, Academic Press, London.Google Scholar
  10. Christiansen, K. 1962. Proposition for the classification of cave animals. Spelunca 2: 76–78.Google Scholar
  11. Cohen, D.M. & J.E. McCosker. 1998. A new species of bythitid fish, genus Lucifuga, from the Gal´apagos Islands. Bull. Mar. Sci. 63: 179–187.Google Scholar
  12. Cummins, K.W. & J.C. Wuycheck. 1971. Caloric equivalents for investigations in ecological energetics. Mitt. internat. Verein. Limnol. 18: 1–158.Google Scholar
  13. Danielopol, D.L., A. Baltan´as & W.F. Humphreys. 2000. Danielopolina kornickeri sp. n. (Ostracoda: Thaumatocypridoidea) from a western Australian anchialine cave – morphology and evolution. Zool. Scripta 29: 1–16.Google Scholar
  14. Díaz Perez, P.A., A.M. Lima & E.G. Machado. 1987a. Morphologia externa de ejemplares machos de Lucifuga simile Nalbant, 1981 (Ophidiiformes, Bythitidae). Revista Biol. (Havana) 1: 77–84.Google Scholar
  15. Díaz Perez, P.A., E. Nieto Misas & G. Abio Virsida. 1987b. Peces ciegos del genero Lucifuga (Ophidiiformes: Bythitidae) en dos casimbas cubanas. Rev. Invest. Mar. 8: 41–47.Google Scholar
  16. Ford, D.C. & P.W. Williams. 1989. Karst geomorphology and hydrology. Unwin Hyman, London. 601 pp.Google Scholar
  17. Gentilli, J. 1972. Australian climatic patterns. Nelson, Melbourne. 285 pp.Google Scholar
  18. Gentilli, J. 1979. Epitropical westerly jet advective storms. Q. Geogr. J. 5: 1–20.Google Scholar
  19. Harvey, M.S. & W.F. Humphreys. 1995. Notes on the genus Draculoides Harvey (Schizomida: Hubbardiidae), with the description of a newtroglobitic species. Rec.West. Austr. Mus. (Suppl.) 52: 183–189.Google Scholar
  20. Hays, J.D., J. Imbrie & N.J. Shackleton. 1976. Variations in the Earth's orbit: pacemaker of the ice ages. Science 194: 1121–1132.Google Scholar
  21. Humphreys, W.F. 1993a. Stygofauna in semi-arid tropical Western Australia: a Tethyan connection? Mém. Biospéol. 20: 111–116.Google Scholar
  22. Humphreys, W.F. 1993b. The significance of the subterranean fauna in biogeographical reconstruction: examples from Cape Range peninsula, Western Australia. Rec. West. Austr. Mus. (Suppl.) 45: 165–192.Google Scholar
  23. Humphreys, W.F. 1999a. Relict stygofaunas living in sea salt, karst and calcrete habitats in arid northwestern Australia contain many ancient lineages. pp. 219–227. In: W. Ponder & D. Lunney (ed.) The Other 99%, The Conservation and Biodiversity of Invertebrates, Transactions of the Royal Zoological Society of New South Wales, Mosman.Google Scholar
  24. Humphreys, W.F. 1999b. Physico-chemical profile and energy fixation in Bundera Sinkhole, an anchialine remiped habitat in north-western Australia. J. Roy. Soc. West. Austr. 82: 89–98.Google Scholar
  25. Humphreys, W.F. 1999c. The distribution of the Australian cave fishes. Rec. West. Austr. Mus. 19: 469–472.Google Scholar
  26. Humphreys, W.F. 2000a. The hypogean fauna of the Cape Range peninsula and Barrow Island, north-west Australia. pp. 581–601. In: H. Wilkens, D.C. Culver & W.F. Humphreys (ed.) Ecosystems of the World, Vol. 30, Subterranean Ecosystems, Elsevier, Amsterdam.Google Scholar
  27. Humphreys, W.F. 2000b. Karst wetlands biodiversity and continuity through major climatic change – an example from arid tropical Western Australia. pp. 227–258. In: B. Gopal, W.J. Junk & J.A. Davis (ed.) Biodiversity in Wetlands: Assessment, Function and Conservation,Vol. 1, Backhuys Publishers, Leiden.Google Scholar
  28. Humphreys, W.F. 2000c. Background and glossary. pp. 3–14. In: H. Wilkens, D.C. Culver & W.F. Humphreys (ed.) Ecosystems of theWorld,Vol. 30, Subterranean Ecosystems, Elsevier, Amsterdam.Google Scholar
  29. Humphreys, W.F. & M. Adams. 1991. The subterranean aquatic fauna of the North West Cape peninsula, Western Australia. Rec. West. Austr. Mus. 15: 383–411.Google Scholar
  30. Humphreys, W.F., M. Adams & B. Vine. 1989. The biology of Schizomus vinei (Chelicerata: Schizomida) in the caves of Cape Range, Western Australia. J. Zool. Lond. 217: 177–201.Google Scholar
  31. Humphreys, W.F. & M.N. Feinberg. 1995. Food of the blind cave fishes of northwestern Australia. Rec. West. Austr. Mus. 17: 29–33.Google Scholar
  32. Humphreys, W.F., A. Poole, S.M. Eberhard & D. Warren. 1999. Effects of research diving on the physico-chemical profile of Bundera Sinkhole, an anchialine remiped habitat at Cape Range, Western Australia. J. Roy. Soc. West. Austr. 82: 99–108.Google Scholar
  33. Iliffe, T.M. 2000. Anchialine cave ecology. pp 59–76. In: H. Wilkens, D.C. Culver & W.F. Humphreys (ed.) Ecosystems of the World, Vol. 30, Subterranean Ecosystems, Elsevier, Amsterdam.Google Scholar
  34. Jaume, D., G.A. Boxshall & W.F. Humphreys. 2001. New stygobiont copepods (Calanoida, Misophrioida) from Bundera Sinkhole, an anchialine cenote on north-western Australia. Zool. J. Linn. Soc., Lond. (in press).Google Scholar
  35. Jaume, D. & W.F. Humphreys. 2001. A new genus of epacteriscid calanoid copepod from an anchialine sinkhole in northwestern Australia. J. Crust. Biol. 21: 157–169.Google Scholar
  36. Keighery, G. & N. Gibson. 1993. Biogeography and composition of the flora of the Cape Range peninsula, Western Australia. Rec. West. Austr. Mus (Suppl.) 45: 51–85.Google Scholar
  37. Knott, B. 1993. Stygofauna from Cape Range peninsula,Western Australia: tethyan relicts. Rec. West. Austr. Mus. (Suppl.) 45: 109–127.Google Scholar
  38. Kuhajda, B.R. & R.L. Mayden. 2001. Status of the federally endangered Alabama cavefish, Speoplatyrhinus poulsoni (Amblyopsidae), in Key Cave and the surrounding caves, Alabama. Env. Biol. Fish. 62: 215–222 (this volume).Google Scholar
  39. Levins, R. 1969. Evolution in changing environments. Princeton University Press, Princeton. 120 pp.Google Scholar
  40. Martin, M.W. 1990. Exmouth town water supply investigation report and recommendations for future work. Hydrogeology Report No. 1990/36, Western Australian Geological Survey, Perth. 11 pp.Google Scholar
  41. McNamara, K.J. (ed.), 1990. Evolutionary Trends. Belhaven Press, London. 368 pp.Google Scholar
  42. McNamara, K.J. & G.W. Kendrick. 1994. Cenozoic molluscs and echinoids of Barrow Island,Western Australia. Rec.West. Austr. Mus. (Suppl.) 51: 1–50.Google Scholar
  43. Mees, G.F. 1962. The subterranean fauna of Yardie Creek station, NorthWest Cape,Western Australia. J. Roy. Soc.West. Austr. 45: 24–32.Google Scholar
  44. Michaelis, F.B. 1985. Threatened fish. A report on the threatened fish of inland water of Australia. Australian National Parks and Wildlife Service, Report Series (3): 1–45.Google Scholar
  45. Morse, K. 1993.Whocan see the sea? Prehistoric aboriginal occupation of the Cape Range peninsula. Rec. West. Austr. Mus. (Suppl.) 45: 227–242.Google Scholar
  46. Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York. 512 pp.Google Scholar
  47. Nelson, J.S. 1984. Fishes of the World, 2nd edn. Wiley-Interscience, New York. 532 pp.Google Scholar
  48. Nevo. E. 1978. Genetic variation in natural populations: patterns and theory. Theor. Pop. Biol. 13: 121–177.Google Scholar
  49. Nevo, E., A. Beiles & R. Ben-Sholmo. 1984. The evolutionary significance of genetic diversity: ecological, demographic, and life history correlates. pp. 13–213. In:G.S. Mani (ed.) Lecture Notes in Biomathematics, Vol. 53, Springer-Verlag, Berlin.Google Scholar
  50. Palmer, J. 1985. The blue holes of the Bahamas. Jonathon Cape, London. 185 pp.Google Scholar
  51. Pesce, G.L., P. De Laurentiis & W.F. Humphreys. 1996. Copepods from ground waters of Western Australia, Part I, The genera Metacyclops, Mesocyclops, Microcyclops and Apocyclops (Crustacea Copepoda: Cyclopidae). Rec.West. Austr. Mus. 18: 67–76.Google Scholar
  52. Planes, S. 1998. Genetic diversity and dispersal capabilities in marine fish. Evol. Biol. 30: 253–298.Google Scholar
  53. Poore, G.C.B. & W.F. Humphreys. 1992. First record of Thermosbaenacea (Crustacea) from the Southern Hemisphere: a new species from a cave in tropical Western Australia. Invert. Taxon. 6: 719–725.Google Scholar
  54. Poulson, T.L. 1964 Animals in aquatic environments: animals in caves. pp. 749–771. In: D.B. Dull (ed.) Handbook of Physiology, American Physiological Society, Washington.Google Scholar
  55. Romero, A. & P.B.S. Vanselow. 2000a. Threatened fishes of the world: Milyeringa veritas Whitley, 1945 (Eleotridae). Env. Biol. Fish. 57: 36.Google Scholar
  56. Romero, A. & P.B.S. Vanselow. 2000b. Threatened fishes of the world: Ophisternon candidum (Mees) (Synbranchidae). Env. Biol. Fish. 58: 214.Google Scholar
  57. Sbordoni, V., A. Caccone, G. Allegrucci & D. Cesaroni. 1990. Molecular island biogeography. Atti Convegn. Lincei 85: 55–83.Google Scholar
  58. Sket, B. 1981. Fauna of anchialine (coastal) cave waters, its origin and importance. pp. 646–647. In: B.F. Beck (ed.) Proceedings of the Eighth International Congress of Speleology, Bowling Green, Kentucky, Vol. 6, National Speleological Society, Huntsville.Google Scholar
  59. Sket, B. 1986. Ecology of the mixohaline hypogean fauna along the Yugoslav coast. Stygologia 2: 317–338.Google Scholar
  60. Sket, B. 1996. The ecology of anchihaline caves. Trends Ecol. Evol. 11: 221–255.Google Scholar
  61. Slack-Smith, S.M. 1993. The non-marine molluscs of the Cape Range peninsula, Western Australia. Rec. West. Austr. Mus. (Suppl.) 45: 87–107.Google Scholar
  62. Slatkin, M. 1981. Estimating level of gene flow in natural populations. Genetics 99: 323–335.Google Scholar
  63. Slatkin, M. & N.H. Barton. 1989. A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43: 1349–1368.Google Scholar
  64. Soulé, M. 1976. Allozyme variation: its determinants in space and time. pp. 60–77. In: F.J. Ayala (ed.) Molecular Evolution, Sinauer Associates, Sunderland.Google Scholar
  65. Stock, J.H., T.M. Iliffe & D. Williams. 1986. The concept ‘anchialine’ reconsidered. Stygologia 2: 90–92.Google Scholar
  66. Thinès, G. & G. Proudlove. 1986. Pisces. pp. 709–733. In: L. Botosaneanu (ed.) Stygofauna Mundi, A Faunistic, Distributional, and Ecological Synthesis of theWorld Fauna Inhabiting Subterranean Waters, E.J. Brill/Dr. W. Backhuys, Leiden.Google Scholar
  67. Trexler, J.C. 1988. Hierarchical organization of genetic variation in the sailfish molly, Poecilia latipinna (Pisces: Poeciliidae). Evolution 42: 1006–1017.Google Scholar
  68. Van Valen, L. 1965. Morphological variation and width of ecological niche. Amer. Nat. 94: 377–390.Google Scholar
  69. Weber, A., G.S. Proudlove & T.T. Nalbant. 1998a. Pisces (Teleostei). A. Morphology, systematic diversity, distribution, and ecology of stygobitic fishes. pp. 1179–1190. In: C. Juberthie & V. Decu (ed.) Encyclopaedia Biospeologica II, Sociétée de Biospéologie, Moulis & Academie Roumaine, Bucarest.Google Scholar
  70. Weber, A., G. S. Proudlove, J. Parzefall, H. Wilkens & T.T. Nalbant. 1998b. Pisces (Teleostei). pp. 1177–1213. In: C. Juberthie & V. Decu (ed.) Encyclopaedia Biospeologica II, Sociétée de Biospéologie, Moulis & Academie Roumaine, Bucarest.Google Scholar
  71. Whitley, G.P. 1945. New sharks and fishes from Western Australia, Part 2. Austr. Zool. 11: 35–37.Google Scholar
  72. Wilkens, H. 1988. Evolution and genetics of epigean and cave Astyanax fasciatus (Characidae, Piscesae, Pisces): support for the neutral mutation theory. Evol. Biol. 23: 271–367.Google Scholar
  73. Wilkens, H., U. Strecker & J. Yager. 1989. Eye reduction and phylogenetic age in ophidiform cave fish. Z. zool. Syst. Evolut.-forsch. 27: 126–134.Google Scholar
  74. Wright. S. 1931. Evolution in Mendelian populations. Genetics 16: 97–159.Google Scholar
  75. Wyrwoll, K.H., G.W. Kendrick & J.A. Long. 1993. The geomorphology and Late Cenozoic geological evolution of the Cape Range–Exmouth Gulf region. Rec. West. Austr. Mus. (Suppl.) 45: 1–23.Google Scholar
  76. Yager, J. 1981. Remipedia, a newclass of Crustacea from a marine cave in the Bahamas. J. Crust. Biol. 1: 328–333.Google Scholar
  77. Yager, J. & W.F. Humphreys. 1996. Lasionectes exleyi sp. nov., the first remipede crustacean recorded from Australia and the Indian Ocean, with a key to the world species. Invert. Taxon. 10: 171–187.Google Scholar
  78. Young, M. 1986. Bringing the blind gudgeon into captivity. Fish. Sahul 4: 145–148.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • William F. Humphreys
    • 1
  1. 1.Terrestrial Invertebrate ZoologyWestern Australian MuseumPerthAustralia

Personalised recommendations