Hydrobiologia

, Volume 451, Issue 1–3, pp 213–221 | Cite as

Developing jellyfish strategy hypotheses using circulation models

  • Donald R. Johnson
  • Harriet M. Perry
  • W. David Burke
Article

Abstract

Little information exists relating life histories of jellyfish species to ocean currents. Successful cycling from sessile polyp to mature jellyfish and back must doubtlessly rely on circulation patterns that serve to retain the species in an optimum environment or disperse the species for other adaptive advantages. In this study, current vectors from a high resolution numerical model of the Gulf of Mexico are applied to a simple advection scheme to develop estimates of time and distance scales from probable polyp habitats to areas in which mature scyphomedusae are observed in the northern Gulf of Mexico. Although seasonal patterns of wind stress form the basis for circulation processes that favour shoreward distribution of medusae of oceanic origin, this dynamic may be altered by deep basin events that occur during critical life history stages. Inter-annual differences in distributional patterns of the sea nettle, Chrysaora quinquecirrha (Desor 1848), in Mississippi coastal waters could be explained by Loop Current processes that alter shelf circulation in the Mississippi Bight.

Scyphozoa Chrysaora quinquecirrha ocean circulation numerical modeling distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blumberg, A. F. & G. L. Mellor, 1983. Diagnostic and prognostic numerical circulation studies of the South Atlantic Bight. J. Geophys. Res. 88: 4579–4592.Google Scholar
  2. Burke, W. D., 1975a. Biology and distribution of the macrocoelenterates of Mississippi Sound and adjacent waters. Gulf Res. Repts. 5: 17–28.Google Scholar
  3. Burke, W. D., 1975b. Pelagic Cnidaria of Mississippi Sound and adjacent waters. Gulf Res. Repts. 5: 23–38.Google Scholar
  4. Cargo, D. G. & D. R. King, 1990. Forecasting the abundance of the sea nettle,Chrysaora quinquecirrha, in the Chesapeake Bay. Estuaries 13: 486–491.Google Scholar
  5. Cargo, D. G. & L. P. Schultz, 1966. Notes on the biology of the sea nettle,Chrysaora quinquecirrha, in the Chesapeake Bay. Ches. Sci. 7: 95–100.Google Scholar
  6. Choi, J. K. & L. H. Kantha, 1997. Refinement and verification of a climatological and forecast model of the Loop Current and associated eddies. Colorado Center for Astrodynamics Research, Univ. Colorado, Report for EJIP CASE.Google Scholar
  7. Elliot, B. A., 1982. Anticyclonic rings in the Gulf of Mexico. J. Phys. Oceanogr. 12: 1292–1309.Google Scholar
  8. Feigenbaum, D. & M. Kelly, 1984. Changes in the lower Chesapeake Bay food chain in the presence of the sea nettle Chrysaora quinquecirrha (Scyphomedusa). Mar. Ecol. Prog. Ser. 19: 39–47.Google Scholar
  9. Graham, W. M., 2001. Numerical increases and distributional shifts of Chrysaora quinquecirrha (Desor) and Aurelia aurita (Linné) (Cnidaria: Scyphozoa) in the northern Gulf of Mexico. Hydrobiologia 451 (Dev. Hydrobiol. 155): 97–111.Google Scholar
  10. Hood, R. R., H. V. Wang, J. E. Purcell, E. D. Houde & L. W. Harding, Jr., 1999. Modeling particles and pelagic organisms in Chesapeake Bay: convergent features control plankton distributions. J. Geophys. Res. 104: 1223–1243.Google Scholar
  11. Huh, O. K., W. J. Wiseman, Jr. & L. R. Rouse, 1981. Intrusion of Loop Current waters onto the west Florida continental shelf. J. Geophys. Res. 86: 4186–4192.Google Scholar
  12. Hurlburt, H. E. & J. D. Thompson, 1980. A numerical study of Loop Current intrusions and eddy shedding. J. Phys. Oceanogr. 10: 1611–1651.Google Scholar
  13. Johnson, D. R. & H.M. Perry, 1999. Blue crab larval dispersion and retention in the Mississippi Bight. Bull. mar. Sci. 65: 129–149.Google Scholar
  14. Johnson, D. R., J. D. Thompson & J. D. Hawkins, 1992. Circulation in the Gulf of Mexico from Geosat altimetry during 1985–1986. J. Geophys. Res. 97: 2201–2214.Google Scholar
  15. Oey, L-Y., 1995. Eddy-and wind-forced shelf circulation. J. Geophys. Res. 100: 8621–8637.Google Scholar
  16. Perry, H. M., D. Johnson, C. Trigg, C. Eleuterius & J. Warren, 1998. Application of remote sensing to settlement of Callinectes sapidus megalopae in the Mississippi Bight. J. Shell. Res. 17(5): 1439–1442.Google Scholar
  17. Purcell, J. E., J. R. White & M. R. Roman, 1994a. Predation by gelatinous zooplankton and resource limitation as potential controls of Acartia tonsa copepod populations in Chesapeake Bay. Limnol. Oceanogr. 39: 263–278.Google Scholar
  18. Purcell, J. E., D. A. Nemazie, S. E. Dorsey, E. D. Houde & J. C. Gamble, 1994b. Predation mortality of bay anchovy Anchoa mitchilli eggs and larvae due to scyphomedusae and ctenophores in Chesapeake Bay. Mar. Ecol. Prog. Ser. 114:47–58.Google Scholar
  19. Purcell, J. E., J. R. White, D. A. Nemazie & D. A. Wright, 1999. Temperature, salinity and food effects on asexual reproduction and abundance of the scyphozoan, Chrysaora quinquecirrha. Mar. Ecol. Prog. Ser. 180: 187–196.Google Scholar
  20. Schultz, L. P. & D. G. Cargo, 1969. Sea nettle barriers for bathing beaches in upper Chesapeake Bay. Natural Resources Institute, University of Maryland, College Park, Maryland. Ref. No. 69– 58: 10 pp.Google Scholar
  21. Thompson, M. J., W.W. Schroeder & N.W. Phillips, 1999. Ecology of live bottom habitats of the northeastern Gulf of Mexico: a community profile. U.S. Dept. Interior, Minerals Management Service, OCS Study mmS 99-0004: 1–74.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Donald R. Johnson
    • 1
  • Harriet M. Perry
    • 2
  • W. David Burke
    • 2
  1. 1.Naval Research Laboratory, Oceanography DivisionStennis Space CenterU.S.A.
  2. 2.Institute of Marine Sciences, Gulf Coast Research LaboratoryUniversity of Southern MississippiOcean SpringsU.S.A.

Personalised recommendations