Journal of Materials Science

, Volume 36, Issue 20, pp 4883–4891 | Cite as

Thermo-mechanical properties of hyperbranched polymer modified epoxies

  • R. Mezzenga
  • J. A. E. Månson


The thermo-mechanical properties of hyperbranched polymer-epoxy blends and their dependence on hyperbranched polymer shell chemistry were investigated. Hyperbranched polymers were shown to be able to increase resin toughness by inducing both a heterogeneous and homogeneous morphology. While the former was better performing in terms of toughness, the latter showed satisfactory toughness together with complete transparency. In order to understand fracture toughness enhancement, toughening mechanisms as well as the properties of both matrix and particles were studied. Particle composition was derived by combining dynamic mechanical analysis and the Fox equation. This resulted in an evaluation not only of particle composition but also of glass transition temperature and stiffness, whose value was cross-checked by a micro-mechanical model. The complete picture concerning particle and matrix properties, as well as toughening mechanisms and their dependence on hyperbranched polymer shell chemistry, finally enabled defining the optimum molecular design of the hyperbranched polymers in order to achieve the desired fracture toughness.


Epoxy Glass Transition Fracture Toughness Glass Transition Temperature Mechanical Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. N. Haward and D. R. J. Owen, J.Mater.Sci. 8 (1973) 1136.Google Scholar
  2. 2.
    J. N. Sultan and F. J. McGarry, Polym.Eng.Sci. 13 (1973) 29.Google Scholar
  3. 3.
    S. C. Kunz, J. A. Sayre and R. A. Assink, Polymer 23 (1982) 1897.Google Scholar
  4. 4.
    X. H. Chen and Y. W. Mai, J.Mater.Sci. 34 (1999) 2139.Google Scholar
  5. 5.
    C. B. Bucknall and I. K. Partidge, Polymer 24 (1982) 639.Google Scholar
  6. 6.
    D. Verchere, H. Sautereau, J. P. Pascault, S. M. Moschiar, C. C. Riccardi and J. J. Williams, J.App.Polym.Sci. 41 (1990) 467.Google Scholar
  7. 7.
    A. J. Kinloch and D. L. Hunston, J.Mater.Sci.Lett. 6 (1987) 137.Google Scholar
  8. 8.
    L. Boogh, B. Pettersson and J. A. E. MÅnson, Polymer 40 (1999) 2249.Google Scholar
  9. 9.
    R. Mezzenga, L. Boogh, B. Pettersson and J. A.E. MÅnson, Macromol.Symp. 149 (2000) 17.Google Scholar
  10. 10.
    R. Mezzenga, C. J. G. Plummer, L. Boogh, B. Pettersson and J. A. E. MÅnson, Polymer 42 (2001) 305.Google Scholar
  11. 11.
    R. Mezzenga, L. Boogh and J. A. E. MÅnson, in Proceedings of Deformation Yield and Fracture of Polymers, Cambridge, April 2000, p. 55.Google Scholar
  12. 12.
    T. G. Fox, Bull.Am.Phys.Soc. 1 (1956) 123.Google Scholar
  13. 13.
    Z. Hashin, J.Appl.Mechanics 29 (1962) 143.Google Scholar
  14. 14.
    Y. Huang and A. J. Kinloch, J.Mater.Sci. 27 (1992) 2753.Google Scholar
  15. 15.
    X. H. Chen and Y. W. Mai, ibid. 33 (1998) 3529.Google Scholar
  16. 16.
    F. J. Guild and A. J. Kinloch, ibid. 30 (1995) 1689.Google Scholar
  17. 17.
    F. J. Guild and R. J. Young, ibid. 24 2454 (1989).Google Scholar
  18. 18.
    D. S. Dugdale, J.Mech.Phys.Solids 8 (1960) 100.Google Scholar
  19. 19.
    C. B. Bucknall, “Toughened Plastics” (Applied Science Publishers, London, 1977).Google Scholar
  20. 20.
    Y. Huang and A. J. Kinloch, J.Mater.Sci. 27 (1992) 2763.Google Scholar
  21. 21.
    T. Fukui, Y. Kikuchi and T. Inoue, Polymer 32 (1991) 2367.Google Scholar
  22. 22.
    W. D. Bascom, R. Y. Ting, R. J. Moulton, C. K. Riew and A. R. Siebert, J.Mater.Sci. 16 (1981) 2657.Google Scholar
  23. 23.
    A. Lazzeri and C. B. Bucknall, ibid. 28 (1993) 6799.Google Scholar
  24. 24.
    C. Fond, A. Lobbrecht and R. Schirrer, submitted.Google Scholar
  25. 25.
    C. B. Bucknall, D. S. Ayre and D. J. Dijkstra, Polymer 41 (2000) 5937.Google Scholar
  26. 26.
    A. J. Kinloch, C. A. Finch and S. Hashemi, Polym. Comm. 28 (1987) 323.Google Scholar
  27. 27.
    J. N. Goodier, J.Appl.Mech. 55 (1933) 39.Google Scholar
  28. 28.
    A. F. Yee and R. A. Pearson, J.Mater.Sci. 21 (1986) 2462.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  1. 1.Laboratoire de Technologie des Composites et Polymères (LTC)École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations