Hydrobiologia

, Volume 451, Issue 1–3, pp 199–212 | Cite as

A physical context for gelatinous zooplankton aggregations: a review

  • William M. Graham
  • Fransesc Pagès
  • William M. Hamner

Abstract

The magnitude and extent of jellyfish blooms are influenced not only by the biology and behavior of the animal, but also by the geographic setting and physical environment. Hydrography alone is often thought to cause or favor gelatinous zooplankton aggregations, however, it is clear that interactions between biology of the animal and physics of the water are very important sources of population variations, especially at local scales. We summarize the role of physical processes and phenomena that promote aggregations of gelatinous zooplankton. We have identified and discussed a suite of physical gradients that can be perceived by gelatinous zooplankton. These include light, gravity, temperature, salinity, pressure and turbulence. A recurring theme is accumulation of jellyfish around physical discontinuities such as fronts (shelf-break, upwelling, tidal and estuarine) and pycnoclines (thermoclines and haloclines). Interestingly, there are few data to suggest that large-scale, quasi-stationary features, such as the largest oceanic fronts, serve to physically aggregate gelatinous animals at a similar scale. Rather, examples of local aggregations appear to dominate the literature. We also discuss various jellyfish behaviors that are theorized to promote aggregation, feeding and reproduction in relation to physical discontinuities.

jellyfish blooms fronts behavior thermoclines haloclines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alldredge, A. L., 1982. Aggregation of spawning appendicularians in surface windrows. Bull. mar. Sci. 32: 250–254.Google Scholar
  2. Anderson, P. A. V. & G. O. Mackie, 1977. Electrically coupled, photosensitive neurons control swimming in a jellyfish. Science 197: 186–188.PubMedGoogle Scholar
  3. Arai, M. N., 1973. Behavior of planktonic coelenterates, Sarsia tubulosa, Philiadium gregarium and Pleurobrachia pileus in salinity discontinuity layers. J. Fish. Res. Bd Can. 30: 1105–1110.Google Scholar
  4. Arai, M. N., 1976. Behavior of planktonic coelenterates in temperature and salinity discontinuity layers. In Mackie, G.O. (ed.), Coelenterate Ecology and Behavior, Plenum Press, New York: 211–217.Google Scholar
  5. Arai, M. N., 1992. Active and passive factors affecting aggregations of hydromedusae: a review. In Bouillon, J., F. Boero, F. Cicogna, J. M. Gili & R. G. Hughes (eds), Aspects of Hydrozoan Biology, Sci. Mar. 56: 99–108.Google Scholar
  6. Arai, M. N., 1997. A Functional Biology of Scyphozoa. Chapman & Hall, New York: 316 pp.Google Scholar
  7. Arkett, S. A., 1985. The shadow response of a hydromedusan (Polyorchis penicillatus): behavioral mechanisms controlling diel and ontogenetic vertical migration. Biol. Bull. 169: 297–312.Google Scholar
  8. Backus, R. H., R. C. Clark & A. S. Wing, 1965. Behaviour of certain marine organisms during the solar eclipse of July 20, 1963. Nature 205: 989–991.Google Scholar
  9. Bailey, K. M. & R. S. Batty, 1983. A laboratory study of predation by Aurelia aurita on larval herring (Clupea harengus): experimental observations compared with model predictions. Mar. Biol. 72: 295–301.Google Scholar
  10. Barham, E. G., 1963. Siphonophores and the deep scattering layer. Science 140: 826–828.Google Scholar
  11. Bayly, I. A. E., 1986. Aspects of diel vertical migration in zooplankton, and its enigma variations. In Deckker, P. D. & W. D. Williams (eds), Limnology in Australia, CSIRO, Melbourne: 349–368.Google Scholar
  12. Bidigare, R. R. & D. C. Biggs, 1980. The role of sulfate exclusion in buoyancy maintenance by siphonophores and other oceanic gelatinous zooplankton. Comp. Biochem. Physiol. 66A: 467–471.Google Scholar
  13. Bieri, R., 1977. The ecological significance of seasonal occurrence and growth rate of Velella (Hydrozoa). Publ. Seto Mar. Biol. Lab. 24: 63–76.Google Scholar
  14. Brodeur, R. D., 1998. In situ observations of the association between juvenile fishes and scyphomedusae in the Bering Sea. Mar. Ecol. Prog. Ser. 163: 11–20.Google Scholar
  15. Brodeur, R. D., M. T. Wilson & J. M. Napp, 1997. Distribution of juvenile Pollock relative to frontal structure near the Pribilof Islands, Bering Sea. In Forage Fishes in Marine Ecosystems, American Fisheries Society, Lowell Wakefield Fisheries Symposium Series, no. 14: 573–589.Google Scholar
  16. Coachman, L. K., 1986. Circulation, water mass, and fluxes on the southeastern Bering Sea shelf. Cont. Shelf Res. 5: 23–108.Google Scholar
  17. Coyle, K. O. & R. T. Cooney, 1993. Water column sound scattering and hydrography around the Pribilof Islands, Bering Sea. Cont. Shelf Res. 13: 803–827.Google Scholar
  18. Davis, C. S., S. M. Gallager & A. R. Solow, 1992. Microaggregations of oceanic plankton observed by towed video microscopy. Science 257: 230–232.Google Scholar
  19. Dawson, M. N, L. E. Martin & L. K. Penland, 2001. Jellyfish swarms, tourists and the Christ-child. Hydrobiologia 451 (Dev. Hydrobiol. 155): 131–144.Google Scholar
  20. Deibel, D., 1985. Blooms of the pelagic tunicate Dolioletta gegenbauri: are they associated with Gulf Stream frontal eddies? J. mar Res. 43: 211–26.Google Scholar
  21. Enright, J. T. & W. M. Hamner. 1967. Vertical diurnal migration and endogenous rhythmicity. Science 157: 137–141.Google Scholar
  22. Evans, F., 1986. Velella velella (L), the 'by-the-wind-sailor' in the North Pacific Ocean in 1985. Mar. Obs. 56: 196–200.Google Scholar
  23. Federov, K. N., 1983. The physical nature and structure of oceanic fronts. Lecture Notes on Coastal and Estuarine Studies 19: 333 pp.Google Scholar
  24. Frank, T. M. & E. A. Widder, 1997. The correlation of downwelling irradiance and staggered vertical migration patterns of zooplankton in Wilkinson Basin, Gulf of Maine. J. Plankton Res. 19: 1975–1991.Google Scholar
  25. Franks, P. J. S., 1992. Phytoplankton blooms at fronts: patterns, scales and physical forcing mechanisms. Rev. aquat. Sci. 6: 121–137.Google Scholar
  26. Franqueville, C., 1971. Macroplancton profound (invertébrés) de la Méditerranée Nord-occidentale. Tethys 3: 11–56.Google Scholar
  27. Gorsky, G., N. Lins da Silva, S. Dallot, Ph. Laval, J. C. Braconnot & L. Prieur, 1991. Midwater tunicates: are they related to the permanent front of the Ligurian Sea (NW Mediterranean)? Mar. Ecol. Prog. Ser. 74: 195–204.Google Scholar
  28. Goy, J., P. Morand & M. Etienne, 1989. Long-term fluctuations of Pelagia noctiluca (Cnidaria, Scyphomedusa) in the western Mediterranean Sea. Prediction by climatic variables. Deep-Sea Res. 36: 269–279.Google Scholar
  29. Graham, W. M., 1993. Spatio-temporal scale assessment of an 'upwelling shadow' in northern Monterey Bay, California. Estuaries 16: 83–91.Google Scholar
  30. Graham, W. M., 1994. The physical oceanography and ecology of upwelling shadows. Doctoral dissertation, Department of Biology, University of California, Santa Cruz, 204 pp.Google Scholar
  31. Graham, W. M., J. G. Field & D. C. Potts, 1992. Persistent “upwelling shadows” and their influence on zooplankton distributions. Mar. Biol. 114: 561–570.Google Scholar
  32. Graham, W. M. & J. L. Largier, 1997. Upwelling shadows as nearshore retention sites: the example of northern Monterey Bay. Cont. Shelf Res. 17: 509–532.Google Scholar
  33. Hamner, W.M., 1985. The importance of ethology for investigations of marine zooplankton. Bull. mar. Sci. 37: 414–424.Google Scholar
  34. Hamner, W. M., 1995. Sensory ecology of scyphomedusae. Mar. Fresh. Behav. Physiol. 26: 101–118.Google Scholar
  35. Hamner, W. M., L. P. Madin, A. L. Alldredge, R. W. Gilmer & P. P. Hamner, 1975. Underwater observations of gelatinous zooplankton: sampling problems, feeding biology and behavior. Limnol. Oceanogr. 20: 907–917.Google Scholar
  36. Hamner, W. M. & I. R. Hauri, 1981. Long-distance horizontal migrations of zooplankton (scyphomedusae: Mastigias). Limnol. Oceanogr. 26: 414–423.Google Scholar
  37. Hamner, W. M., R. W. Gilmer & P. P. Hamner, 1982. The physical, chemical, and biological characteristics of a stratified, saline, sulfide lake in Palau. Limnol. Oceanogr. 27: 896–909.Google Scholar
  38. Hamner, W. M. & D. Schneider, 1986. Regularly spaced rows of medusae in the Bering Sea: role of Langmuir circulation. Limnol. Oceanogr. 31: 171–177.Google Scholar
  39. Hamner, W. M., P. P. Hamner & S. W. Strand, 1994. Sun-compass migration by Aurelia aurita (Scyphozoa): population retention and reproduction in Saanich Inlet, British Columbia. Mar. Biol. 119: 347–356.Google Scholar
  40. Harder, W., 1968. Reactions of plankton organisms to water strati-fication. Limnol. Oceanogr. 13: 156–168.Google Scholar
  41. Jacobs, W., 1937. Beobachtungen über das Schwebender der Siphonophoren. Z. vergleich. Physiol. 24: 583–601.Google Scholar
  42. Kennedy, F. S. Jr., 1972. Distribution and abundance of Physalia in Florida waters. Florida Department of Natural Resources, Mar. Res. Lab., Prof. Pap. Ser. 18: 1–38.Google Scholar
  43. Kingsford, M. J., E. Wolanski & J. H. Choat, 1991. Influence of tidally induced fronts and Langmuir circulations on distribution and movements of presettlement fishes around a coral reef. Mar. Biol. 109: 167–180.Google Scholar
  44. Knight-Jones, E. W. & E. Morgan, 1966. Responses of marine animals to changes in hydrostatic pressure. Oceanogr. mar. Biol. ann. Rev. 4: 267–299.Google Scholar
  45. Kopacz, U., 1994. Evidence for tidally-induced vertical migration of some gelatinous zooplankton in the Wadden Sea area near Split. Helgol. Wiss Meeresunters. 48: 333–342.Google Scholar
  46. Kremer, P., 1994. Patterns of abundance for Mnemiopsis in U.S. coastal waters: a comparative overview. ICES J. mar. Sci. 51: 347–354.Google Scholar
  47. Larson, R. J., 1990. Scyphomedusae and cubomedusae from the eastern Pacific. Bull. mar. Sci. 47: 546–556.Google Scholar
  48. Larson, R. J., 1992. Riding Langmuir circulations and swimming in circles: a novel form of clustering behavior by the scyphomedusa Linuche unguiculata. mar. Biol. 112: 229–235.Google Scholar
  49. Larson, R. J., G. I. Matsumoto, L. P. Madin & L. M. Lewis, 1992. Deep-sea benthic and benthopelagic medusae, recent observations from submersibles and a remotely operated vehicle. Bull. mar. Sci. 51: 277–286.Google Scholar
  50. Lenarz, W. H., D. A. VenTresca, W. M. Graham, F. B. Schwing & F. Chavez, 1995. Explorations of El Niño events and associated biological population dynamics off central California. CalCOFI Rep. 36: 106–119.Google Scholar
  51. MacGregor, J. M. & E. D. Houde, 1996. Onshore-offshore pattern and variability in distribution and abundance of bay anchovy Anchoa mitchilli eggs and larvae in Chesapeake Bay. mar. Ecol. Prog. Ser. 138: 15–25.Google Scholar
  52. Mackas, D. L., K. L. Denman & M. R. Abbot, 1985. Plankton patchiness: biology in the physical vernacular. Bull. mar. Sci. 37: 652–674.Google Scholar
  53. Mackie, G. O., R. J. Larson, K. S. Larson & L. M. Passano, 1981. Swimming and vertical migration of Aurelia aurita (L.) in a deep tank. Mar. Behav. Physiol. 7: 321–329.Google Scholar
  54. Malej, A., 1989. Behavior and trophic ecology of the jellyfish Pelagia noctiluca (Forsskål, 1775). J. exp. mar. Biol. Ecol. 126: 259–270.Google Scholar
  55. McCloskey, L. R., L. Muscatine & F. P. Wilkerson, 1994. Daily photosynthesis, respiration, and carbon budgets in a tropical marine jellyfish (Mastigias sp.). Mar. Biol. 19: 13–22.Google Scholar
  56. Mianzan, H., D. Sorarraín, J. Burnett & L. Lutz, In press. Mucocutaneous junctional and lexural paresthesias caused by the holoplanktonic trachymedusae Liriope tetraphylla. Dermatology.Google Scholar
  57. Miller, R. J., 1974. Distribution and biomass of an estuarine ctenophore population, Mnemiopsis leidyi (A. Agassiz). Chesapeake Sci. 15: 1–8.Google Scholar
  58. Mills, C. E., 1981. Diversity of swimming behaviors in hydromedusae as related to feeding and utilization of space. Mar. Biol. 64: 185–189.Google Scholar
  59. Mills, C. E., 1984. Density is altered in hydromedusae and ctenophores in response to changes in salinity. Biol. Bull. 166: 206–215.Google Scholar
  60. Mills, C. E. & R. G. Vogt, 1984. Evidence that ion regulation in hydromedusae and ctenophores does not facilitate vertical migration. Biol. Bull. 166: 216–227.Google Scholar
  61. Mills, C. E. & J. Goy, 1988. In situ observations of the behavior of mesopelagic Solmissus narcomedusae (Cnidaria, Hydrozoa). Bull. mar. Sci. 43: 739–751.Google Scholar
  62. Mills, C. E., P. R. Pugh, G. R. Harbison & S. H. D. Haddock, 1996. Medusae, siphonophores and ctenophores of the Alboran Sea, southwestern Mediterranean. Sci. Mar. 60: 145–163.Google Scholar
  63. Monger, B. C., S. Chinniah-Chandy, E. Meir, S. Billings, C. H. Greene & P. H. Wiebe, 1998. Sound scattering by the gelatinous zooplankters Aequorea victoria and Pleurobrachia bachei. Deep-Sea Res. 45: 1255–1271.Google Scholar
  64. Muscatine, L. & R. E. Marian, 1982. Dissolved inorganic nitrogen flux in symbiotic and nonsymbiotic medusae. Limnol. Oceanogr. 27: 910–917.Google Scholar
  65. Muscatine, L., F. P. Wilkerson & L. R. McCloskey, 1986. Regulation of population density of symbiotic algae in a tropical marine jellyfish (Mastigias sp.). Mar. Ecol. Prog. Ser. 32: 279–290.Google Scholar
  66. Nielsen, A. S., A. M. Pedersen & H. U. Rissgård, 1997. Implications of density driven currents for interaction between jellyfish (Aurelia aurita) and zooplankton in a Danish fjord. Sarsia 82: 297–305.Google Scholar
  67. Owen, R. W. Jr., 1966. Small-scale, horizontal vortices in the surface layer of the sea. J. mar. Res. 24: 56–66.Google Scholar
  68. Owen, R.W., 1981. Fronts and eddies in the sea: mechanisms, interactions and biological effects. In Longhurst, A. R. (ed.), Analysis of marine ecosystems. Academic Press, New York: 197–233.Google Scholar
  69. Owen, R. W., 1989. Microscale and finescale variations of small plankton in coastal and pelagic environments. J. mar. Res. 47: 197–240.Google Scholar
  70. Paffenhöffer, G.-A., T. B. Stewart, M. J. Youngbluth & T. G. Bailey, 1991. High-resolution vertical profiles of pelagic tunicates. J. Plankton Res. 13: 971–981.Google Scholar
  71. Pagès, F. & J-M. Gili, 1991. Vertical distribution of epipelagic siphonophores at the confluence between Benguela waters and the Angola Current over 48 hours. Hydrobiologia 216/217: 355–362.Google Scholar
  72. Pagès, F. & J-M. Gili, 1992. Influence of the thermocline on the vertical migration of medusae during a 48 hr sampling period. S. Afr. J. Zool. 27: 50–59.Google Scholar
  73. Pagès, F. & S. B. Schnack-Schiel, 1996. Distribution patterns of the mesoplankton, principally siphonophores and medusae, in the vicinity of the Antarctic Slope Front (eastern Weddell Sea). J. mar. Syst. 9: 231–248.Google Scholar
  74. Pagès, F., M. G. White & P. G. Rodhouse, 1996. Abundance of gelatinous carnivores in the nekton community of the Antarctic Polar Frontal Zone in summer 1994. Mar. Ecol. Prog. Ser. 141: 139–147.Google Scholar
  75. Pagès, F., H. E. González, M. Ramón, M. Sobarzo & J. M. Gili, 2001. Gelatinous zooplankton assemblages associated with water masses in the Humboldt Current System and potential predatory impact by Bassia bassensis (Siphonophora: Calycophorae). Mar. Ecol. Prog. Ser.Google Scholar
  76. Parrish, J. K. & W. M. Hamner, 1997. Animal Groups in Three Dimensions. Cambridge Univ. Press, Cambridge: 336 pp.Google Scholar
  77. Parrish, J. K. & L. Edelstein-Keshet, 1999. Complexity, pattern and evolutionary trade-offs in animal aggregation. Science 284: 99–101.PubMedGoogle Scholar
  78. Pingree, R. D., P. M. Holligan & R. N. Head, 1977. Survival of dinoflagellate blooms in the western English Channel. Nature 265: 266–269.Google Scholar
  79. Pugh P. R., 1977. Some observations on the vertical migrations and geographical distribution of the siphonophores in the warm waters of the North Atlantic Ocean. In Proccedings of the Symposium on Warm Water Zooplankton. Natl. Inst. Oceanogr. Goa, India: 362–378.Google Scholar
  80. Purcell, J. E. & L. P. Madin, 1991. Diel patterns of migration, feeding, and spawning by salps in the subarctic Pacific. Mar. Ecol. Prog. Ser. 73: 211–217.Google Scholar
  81. Purcell, J. E., D. A. Nemazie, S. E. Dorsey, E. D. Houde & J. C. Gamble, 1994. Predation mortality of bay anchovy Anchoa mitchilli and larvae due to scyphomedusae and ctenophores in Chesapeake Bay. Mar. Ecol. Prog. Ser. 114: 47–58.Google Scholar
  82. Purcell. J. E., E. D. Brown, K. D. E. Stokesbury, L.H. Haldorson & T. C. Shirley, 2000. Aggregations of the jellyfish Aurelia labiata: abundance, distribution, association with age-0 walleye pollock, and behaviors promoting aggregation in Prince William Sound, Alaska, U.S.A. Mar. Ecol. Prog. Ser. 195: 145–158.Google Scholar
  83. Purcell J. E., D. L. Breitbug, M. D. Decker, W. M. Graham, M.J. Youngbluth & K. A. Raskoff, 2001. Pelagic cnidarians and ctenophores in low dissolved oxygen environments: a review. In Rabalais, N. N. & R. E. Turner (eds), Effects of Hypoxia on Living Resources and Ecosystems. American Geophysical Union, Coastal and Estuar. Stud. 58: 77–100.Google Scholar
  84. Raskoff, K. A., 2001. The impact of El Niño events on blooms of mesopelagic hydromedusae. Hydrobiologia 451 (Dev. Hydrobiol. 155): 121–129.Google Scholar
  85. Rice, A. L., 1964. Observations on the effects of changes of hydrostatic pressure on the behaviour of some marine animals. J. mar. biol. Assoc. U. K. 44: 163–175.Google Scholar
  86. Russell, F. S., 1927. The vertical distribution of marine macroplankton. V. The distribution of animals caught in the ring-trawl in the daytime in the Plymouth area. J. mar. biol. Assoc. U. K. 14: 557–608.Google Scholar
  87. Sabatès, A., J. M. Gili & F. Pagès, 1989. Relationship between zooplankton distribution, geographic characteristics and hydrographic patterns off the Catalan coast (western Mediterranean). Mar. Biol. 103: 153–159.Google Scholar
  88. Schuyler, Q., & B. K. Sullivan, 1997. Light responses and diel migration of the scyphomedusa Chrysaora quinquecirrha in mesocosms. J. Plankton Res. 19: 1417–1428.Google Scholar
  89. Shanks, A. L. & W. M. Graham, 1987. Orientated swimming in the jellyfish Stomolophus meleagris L. Agassiz (Scyphozoan: Rhizostomida). J. exp. mar. Biol. Ecol. 108: 159–169.Google Scholar
  90. Shanks, A. L. & W. M. Graham, 1988. Chemical defense in a scyphomedusa. Mar. Ecol. Prog. Ser. 45: 81–86.Google Scholar
  91. Shannon, L. V. & P. Chapman, 1983. Incidence of Physalia on beaches in the South Western Cape Province during January 1983. S. Afr. J. Sci. 79: 454–458.Google Scholar
  92. Shenker, J. M., 1984. Scyphomedusae in surface waters near the Oregon coast, May-August, 1981. Estuar. coast. Shelf Sci. 19: 619–632.Google Scholar
  93. Sullivan, B. K., D. Van Keuren & M. Clancy, 2001. Timing and size of blooms of the ctenophore Mnemiopsis leidyi in relation to temperature in Narragansett Bay, RI. Hydrobiologia 451 (Dev. Hydrobiol. 155): 113–120.Google Scholar
  94. Toyokawa, M., T. Inagaki & M. Terazaki, 1997. Distribution of Aurelia aurita (Linnaeus, 1758) in Tokyo Bay; observations with echosounder and plankton net. Proc. 6th Int. Conf. Coel. Biol. 1995: 483–490.Google Scholar
  95. Ueno, S. & A. Mitsutani, 1994. Small-scale swarm of a hydrozoan medusa Liriope tetraphylla in Hiroshima Bay, the Inland Sea of Japan. Bull. Plankton Soc. Japan 41: 93–104.Google Scholar
  96. Wang, Z., E. Thiébaut & J. C. Dauvin, 1995. Spring abundance and distribution of the ctenophore Pleurobrachia pileus in the Seine estuary: advective transport and diel vertical migration. Mar. Biol. 124: 313–324.Google Scholar
  97. Wiebe, P. H., L. P. Madin, L. R. Haury, G. R. Harbison & L. M. Philbin, 1979. Diel vertical migration by Salpa aspera and its potential for large-scale particulate organic matter transport to the deep-sea. Mar. Biol. 53: 249–255.Google Scholar
  98. Wolanski, E. & W. M. Hamner, 1988. Topographically controlled fronts in the ocean and their biological influence. Science 241: 177–181.Google Scholar
  99. Woodcock, A. H., 1944. A theory of surface water motion deduced from the wind-induced motion of the Physalia. J. mar. Res. 5: 196–205.Google Scholar
  100. Wright, D. A. & J. E. Purcell, 1997. Effect of salinity on ionic shifts in mesohaline scyphomedusae, Chrysaora quinquecirrha. Biol. Bull. 192: 332–339.Google Scholar
  101. Yamamoto, T. & S. Nishizawa, 1986. Small-scale zooplankton aggregations at the front of a Kuroshio warm-core ring. Deep-Sea Res. 33: 1729–1740.Google Scholar
  102. Yasuda, T., 1973. Ecological studies on the jellyfish, Aurelia aurita (Linne), in Urazoko Bay, Fukui Prefecture-VIII. Diel vertical migration of the medusa in early fall, 1969. Publ. Seto Mar. Biol. Lab. 20: 491–500.Google Scholar
  103. Young, J. W., R. W. Bradford, T. D. Lamb & V. D. Lyne, 1996. Biomass of zooplankton and micronekton in the southern bluefin tuna fishing grounds off Tasmania, Australia. Mar. Ecol. Prog. Ser. 138: 1–14.Google Scholar
  104. Zavodnik, D., 1987. Spatial aggregations of the swarming jellyfish Pelagia noctiluca (Scyphozoa). Mar. Biol. 94: 265–269.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • William M. Graham
    • 1
  • Fransesc Pagès
    • 2
  • William M. Hamner
    • 3
  1. 1.Dauphin Island Sea Lab and Department of Marine SciencesUniversity of South AlabamaDauphin IslandU.S.A.
  2. 2.Institut de Ciències del Mar (CSIC)Barcelona, CataloniaSpain
  3. 3.Department of Organismal Biology, Ecology and EvolutionUniversity of California, Los AngelesLos AngelesU.S.A.

Personalised recommendations