, Volume 451, Issue 1–3, pp 11–17 | Cite as

Jellyfish as food

  • Y-H. Peggy Hsieh
  • Fui-Ming Leong
  • Jack Rudloe


Jellyfish have been exploited commercially by Chinese as an important food for more than a thousand years. Semi-dried jellyfish represent a multi-million dollar seafood business in Asia. Traditional processing methods involve a multi-phase processing procedure using a mixture of salt (NaCl) and alum (AlK[SO4]2ċ12 H2O) to reduce the water content, decrease the pH, and firm the texture. Processed jellyfish have a special crunchy and crispy texture. They are then desalted in water before preparing for consumption. Interest in utilizing Stomolophus meleagris L. Agassiz, cannonball jellyfish, from the U. S. as food has increased recently because of high consumer demand in Asia. Desalted ready-to-use (RTU) cannonball jellyfish consists of approximately 95% water and 4–5% protein, which provides a very low caloric value. Cannonball jellyfish collagen has shown a suppressing effect on antigen-induced arthritis in laboratory rats. With the great abundance of cannonball jellyfish in the U. S. coastal waters, turning this jellyfish into value-added products could have tremendous environmental and economic benefits.

jellyfish fishery food health arthritis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barzansky, B., H. M. Lenhoff & H. Bode, 1975. Hydra mesoglea: similarity of its amino acid and neutral sugar composition to that of vertebrate basal lamina. Comp. Biochem. Physiol. 50B: 419–424.Google Scholar
  2. Burke, W. D., 1976. Biology and distribution of the macrocoelenterates of Mississippi Sound and adjacent waters. Gulf Res. Rep. 5: 17–28.Google Scholar
  3. Calder, D. R. & B. S. Hester, 1978. Phylum Cnidaria. In Zingmark, R. G. (ed.), An Annotated Checklist of the Biota of the Coastal Zone of South Carolina. Univ. South Carolina Press, Columbia: 87–93.Google Scholar
  4. Firth, F. E., 1969. The Encyclopedia of Marine Resources. Van Nostrand Reinhold Co., New York: 324–325.Google Scholar
  5. Hooper, S. N. & R. G. Ackman, 1973. Distribution of trans-6-hexadecenoic acid, 7-methyl-7-hexadecenoic acid and common fatty acids in lipids of the ocean sunfish Mola mola. Lipids 8: 509–516.PubMedGoogle Scholar
  6. Hsieh, Y-H. P. & J. Rudloe, 1994. Potential of utilizing jellyfish as food in Western countries. Trends Food Sci. Tech. 5: 225–229.Google Scholar
  7. Hsieh, Y-H. P., F-M. Leong & K.W. Barnes, 1996. Inorganic constituents in fresh and processed cannonball jellyfish (Stomolophus meleagris). J. Agric. Food Chem. 44: 3117–3119.Google Scholar
  8. Huang, Y. W., 1988. Cannonball jellyfish, Stomolophus meleagris as a food resource. J. Food Sci. 53: 341–343.Google Scholar
  9. Joseph, J. D., 1979. Lipid composition of marine and estuarine invertebrates. Porifera and Cnidaria. Prog. Lipid Res. 18: 1–30.Google Scholar
  10. Kimura, S., S. Miura & Y. H. Park, 1983. Collagen as the major edible component of jellyfish (Stomolophus nomurai). J. Food Sci. 48: 1758–1760.Google Scholar
  11. Kraeuter, J. N. & E. M. Setzler, 1975. The seasonal cycle of Scyphozoa and Cubozoa in Georgia estuaries. Bull. mar. Sci. 25: 66–74.Google Scholar
  12. Kramp, P. L., 1961. Synopsis of the medusae of the world. J. mar. biol. Ass. U. K. 40: 1–469.Google Scholar
  13. Larson, R. J., 1976. Marine flora and fauna of the northeastern United States. Cnidaria: Scyphozoa. NOAA Tech. Rep. NMFS Circ. 397: 17.Google Scholar
  14. Leong, F-M., 1995. Processing, chemical composition, and quality evaluation of cannonball jellyfish. M.S. Thesis. Auburn University, Alabama, U.S.A.Google Scholar
  15. Mayer, A. G., 1910. Medusae of the World. Volume 3. 'The Scyphomedusae'. Carnegie Institution of Washington, Washington, DC: 711 pp.Google Scholar
  16. Meinkoth, N. A., 1981. The Audubon Society Field Guide to North American Seashore Creatures. Alfred A. Knopf, New York: 364 pp.Google Scholar
  17. Morikawa, T., 1984. Jellyfish. FAO INFOFISH Marketing Digest 1: 37–39.Google Scholar
  18. Omori, M., 1978. Zooplankton fisheries of the world: a review. Mar. Biol. 48: 199–205.Google Scholar
  19. Omori, M., 1981. Edible jellyfish (Scyphomedusae: Rhizostomeae) in Far East waters. A brief review of the biology and fishery. Bull. Plankton Soc. Japan 28: 1–11 (in Japanese).Google Scholar
  20. Omori, M. & E. Nakano, 2001. Jellyfish fisheries in southeast Asia. Hydrobiologia 451 (Dev. Hydrobiol. 155): 19–26.Google Scholar
  21. Rudloe, J., 1992. Jellyfish: A new fishery for the Florida panhandle. A report to the U. S. Department of Commerce Economic Development Administration. EDA Project no. 04-06-03801: 35 pp.Google Scholar
  22. Soonthonvipat, V., 1976. Dried jellyfish. In Tieros, K. (ed.), Fisheries Resources and their Management in South-east Asia. Proc. Int'l. Seminar Nov-Dec, 1974. German Foundation for Int'l. Dev. Bonn: 149–151.Google Scholar
  23. Subasinghe, S., 1992. Jellyfish processing. INFOFISH Int. 4: 63–65.Google Scholar
  24. Suelo, L.G. 1986. Utilization of the Australian jellyfish Catostylus sp. as a food product. Ph.D. Thesis. University of New South Wales, Sydney, Australia.Google Scholar
  25. Toom, P. M. & D. S. Chan, 1972. Preliminary studies on nematocysts from the jellyfish Stomolophus meleagris. Toxicon 10: 605–610.PubMedGoogle Scholar
  26. Trentham, D. E., A. S. Townes & A. H. Kang, 1977. Autoimmunity to type II collagen: an experimental model of arthritis. J. exp. Med. 146: 857–868.PubMedGoogle Scholar
  27. Wood, F. D., C. M. Pearson & A. Tanaka, 1969. Capacity of mycobacterial wax D and its subfractions to induce adjuvant arthritis in rats. Int. Arch. Allergy Appl. Immunol. 35: 456–467.PubMedGoogle Scholar
  28. Wootton, M., K. A. Buckle & D. Martin, 1982. Studies on the preservation of Australian jellyfish (Catostylus spp.). Food Tech. Aust. 34: 398–400.Google Scholar
  29. Yoshino, S., E. Quattrocchi & H. L. Weiner, 1995. Suppression of antigen-induced arthritis in Lewis rats by oral administration of type II collagen. Arthritis & Rheum. 38: 1092–1096.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Y-H. Peggy Hsieh
    • 1
  • Fui-Ming Leong
    • 2
  • Jack Rudloe
    • 3
  1. 1.Department of Nutrition & Food ScienceAuburn UniversityAuburnU.S.A.
  2. 2.Perseco Asia Pacific SingaporeSingapore
  3. 3.Gulf Specimen Marine Laboratories, Inc.PanaceaU.S.A.

Personalised recommendations