Hydrobiologia

, Volume 451, Issue 1–3, pp 321–333 | Cite as

Distribution, abundance, behavior and metabolism of Periphylla periphylla, a mesopelagic coronate medusa in a Norwegian fjord

  • Marsh J. Youngbluth
  • Ulf Båmstedt
Article

Abstract

The distribution, behavior and metabolism of the mesopelagic jellyfish, Periphylla periphylla (Péron & Lesueur), were investigated in Lurefjorden, Norway. Field studies, conducted in 1998–1999 with plankton nets and a remotely operated vehicle, indicated that 80-90% of the dense (up to 2.5 m−3) population migrated 200–400 m vertically each day throughout the year. In situ observations with red light revealed that swimming rates and feeding activity varied with age and time of day. Detection of turbulence and contact with surfaces caused this medusa to conceal one or all of its tentacles in the stomach or to shed nematocyst-laden tissue from the tentacles. Stomachs of medusae collected with nets were often full of prey entangled with the sloughed tissue. Stomachs of medusae captured individually with ROV samplers were empty or contained only a few prey in their stomachs (typically, 1–4 copepods Calanus spp. or chaetognaths Eukrohnia hamata Möbius per medusa). Low rates (0.4–5.6 μl O2 mg C−1 h−1) of oxygen consumption of P. periphylla suggested that this species was sustained by relatively few (1–34) prey d−1.

jellyfish vertical migration swimming nematocysts net feeding respiration ROV 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alldredge, A. L., 1984. The quantitative significance of gelatinous zooplankton as pelagic consumers. In Fasham, M. J. R. (ed.), Flows of Energy and Materials in Marine Ecosystems: Theory and Practice. Plenum New York: 407–433.Google Scholar
  2. Aksnes, D. L. & T. Magnesen, 1983. Distribution, development and production of Calanus finmarchicus (Gunnerus) in Lindåspollene, western Norway, 1979. Sarsia 68: 195–208.Google Scholar
  3. Aure, J. & R. Sætre, 1981. Wind effects on the Skagerrak outflow. In Sætre, R. & M. Mork (eds), The Norwegian Coastal Current. University of Bergen: 263–293.Google Scholar
  4. Bailey, T. G., J. J. Torres, M. J. Youngbluth & G. P. Owen, 1994. Effect of decompression on mesopelagic gelatinous zooplankton: A comparison of in situ and shipboard measurements of metabolism. Mar. Ecol. Prog. Ser. 113: 13–27.Google Scholar
  5. Båmstedt, U., M. B. Martinussen & S. Matsakis, 1994. Trophodynamics of the two scyphozoan jellyfishes, Aurelia aurita and Cyanea capillata, in western Norway. ICES J. Mar. Sci. 51: 369–382.Google Scholar
  6. Båmstedt, U., J. H. Fosså, M. B. Martinussen & A. Fosshagen, 1998. Mass occurrence of the physonect siphonophore Apolemia uvaria (Lesueur) in Norwegian waters. Sarsia 83: 79–85.Google Scholar
  7. Barham, E. G., 1966. Deep scattering layer migration and composition: observations from a diving saucer. Science 151: 1399–1403.Google Scholar
  8. Berstad, V., U. Båmstedt & M. B. Martinussen, 1995. Distribution and swimming of the jellyfishes Aurelia aurita and Cyanea capillata. In Skjoldal, H. R., C. Hopkins, K. E. Erikstad & H. P. Leinaas (eds), Ecology of Fjords and Coastal Waters. Elsevier Science, London: 257–271.Google Scholar
  9. Child, C. A. & G. R. Harbison, 1986. A parasitic association between a pycnogonid and a scyphomedusa in midwater. J. mar. biol. Ass. U.K. 66: 113–117.Google Scholar
  10. Conover, R. J., 1978. Transformation of organic matter. In Kinne, O. (ed.), Marine Ecology IV, Dynamics. Wiley, Chichester: 221–499.Google Scholar
  11. Dalpadado, P., B. Ellertsen, W. Melle & H. R. Skjoldal, 1998. Summer distribution patterns and biomass estimates of macrozooplankton and micronekton in the Nordic seas. Sarsia 83: 103–116.Google Scholar
  12. Eiane, K., D. L. Aksnes & M. D. Ohman, 1998. Advection and zooplankton fitness. Sarsia 83: 87–93.Google Scholar
  13. Eiane, K., D. L. Aksnes, E. Bagoeien & S. Kaartvedt, 1999. Fish or jellies – a question of visibility? Limnol. Oceanogr. 44: 1352–1357.Google Scholar
  14. Fosså, J. H., 1992. Mass occurrence of Periphylla periphylla (Scyphozoa, Coronatae) in a Norwegian fjord. Sarsia 77: 237–251.Google Scholar
  15. Golmen, L., H. Svendsen, A. Bakke & J. Molvaer, 1998. Strong tide-induced vertical mixing in a deep fjord with a shallow sill. Oceanography 11: 1–5.Google Scholar
  16. Hansson, L. J., 1997. Effect of temperature on growth rate of Aurelia aurita (Cnidaria, Scyphozoa) from Gullmarsfjorden, Sweden. Mar. Ecol. Prog. Ser. 161: 145–153.Google Scholar
  17. Hay, S. J., J. R. G. Hislop & A. M. Shanks, 1990. North Sea scyphomedusae: summer distribution, estimated biomass and significance particularly for 0-group gadoid fish. Neth. J. Sea Res. 25: 113–130.Google Scholar
  18. Hernroth, L. & F. Grøndal, 1983. On the biology of Aurelia aurita. I. Release and growth of Aurelia aurita (L.) ephyrae in the Gullmar Fjord, western Sweden, 1982–83. Ophelia 22: 189–199.Google Scholar
  19. Ikeda, T., J. J. Torres, S. Hernández-León & S. P. Geiger, 2000. Metabolism. In Harris, R., P. Wiebe, J. Lenz, H. R. Skjoldal & M. Huntley (eds), ICES Zooplankton Methodology Manual. Academic Press, New York: 455–532.Google Scholar
  20. Jarms, G., U. Båmstedt, H. Tiemann, M. B. Martinussen & J. H. Fosså, 1999. The holopelagic life cycle of the deep-sea medusa Periphylla periphylla (Scyphozoa, Coronata). Sarsia 84: 55–65.Google Scholar
  21. Johannessen, P., 1980. Resipientundersøkelse av enkelte fjordavsnitt I Lindås kommune med hovedvekt lagt på bunnforhold og bunndyr. Institutt for Marin-biologi, Universitetet I Bergen: 39 pp.Google Scholar
  22. Larson, R. J., 1979. Feeding in coronate medusae (Class Scyphozoa, Order Coronatae). Mar. Behav. Physiol. 6: 123–129.Google Scholar
  23. Larson, R. J., 1986. Pelagic scyphomedusae (Scyphozoa: Coronatae and Semaeostomeae) of the southern Ocean. In Kornicker, L. (ed.), Biology of the Antarctic Seas. XVI. Ant. Res. Ser. 41: 59–165.Google Scholar
  24. Larson, R. J., 1987. Respiration and carbon turnover rates of medusae from the NE Pacific. Comp. Biochem. Physiol. 87A: 93–100.Google Scholar
  25. Larson, R. J., 1990. Scyphomedusae and cubomedusae from the Eastern Pacific. Bull. mar. Sci. 47: 546–556.Google Scholar
  26. Larson, R. J., C. E. Mills & G. R. Harbison, 1991. Western Atlantic midwater hydrozoan and scyphozoan medusae: in situ studies using manned submersibles. Hydrobiologia. 216/217: 311–317.Google Scholar
  27. Lucas, C. H., 2001. Reproduction and life history strategies of the common jellyfish Aurelia aurita, in relation to its ambient environment. Hydrobiologia 451 (Dev. Hydrobiol. 155): 229–246.Google Scholar
  28. Maas, O., 1897. Reports on an exploration off the west coasts of Mexico, Central and South America, and off the Galapagos Islands. XXXI. Die Medusen. Mem. Mus. Comp. Zool. Harv. 23: 9–92.Google Scholar
  29. Mauchline, J., 1998. The biology of calanoid copepods. Adv. mar. Biol. 33: 1–710.Google Scholar
  30. Mills, C. E., 1995. Medusae, siphonophores and ctenophores as planktivorous predators in changing global ecosystems. ICES J. mar. Sci. 52: 575–581.Google Scholar
  31. Möller, H., 1980. Population dynamics of Aurelia aurita medusae in Kiel Bight, Germany (FRG). Mar. Biol. 60: 123–128.Google Scholar
  32. Pagès, F. & J. –M. Gili, 1992. Influence of the thermocline on the vertical migration of medusae during a 48 h sampling period. S. –Afr. Tydskr. Dierk. 27: 50–59.Google Scholar
  33. Pagès, F. & F. Kurbjeweit, 1994. Vertical distribution and abundance of mesoplanktonic medusae and siphonophores from theWeddell Sea, Antarctica. Polar Biol. 14: 243–251.Google Scholar
  34. Pagès, F., M. G. White & P. G. Rodhouse, 1996. Abundance of gelatinous carnivores in the nekton community of the Antarctic polar frontal zone in summer 1994. Mar. Ecol. Prog. Ser. 141: 139–147.Google Scholar
  35. Parsons, T. R., Y. Maita & C.M. Lalli, 1985. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, New York.Google Scholar
  36. Purcell, J. E., 1983. Digestion rates and assimilation efficiencies of siphonophores fed zooplankton prey. Mar. Biol. 73: 257–261.Google Scholar
  37. Purcell, J. E. & C. E. Mills, 1988. The correlation between nematocyst types and diets in pelagic Hydrozoa. In Hessinger, D. & H. Lenhoff (eds), The Biology of Nematocysts. Academic Press, New York: 463–485.Google Scholar
  38. Purcell, J. E. & M. N. Arai, 2001. Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451 (Dev. Hydrobiol. 155): 27–44.Google Scholar
  39. Purcell, J. E., T. A. Shiganova, M. B. Decker & E. D. Houde, 2001. The ctenophore Mnemiopsis in native and exotic habitats: U.S. estuaries versus the Black Sea basin. Hydrobiologia, this volume.Google Scholar
  40. Robison, B. H., 1999. Shape change behavior by mesopelagic animals. Mar. Fresh. Behav. Physiol. 32: 17–25.Google Scholar
  41. Robison, B. H., K. R. Reisenbichler, R. Sherlock, J. M. B. Silguero & F. P. Chavez, 1998. Seasonal abundance of Nanomia bijuga in Monterey Bay. Deep-Sea Res. II, 45: 1741–1751.Google Scholar
  42. Rogers, C. A., D. C. Biggs & R. A. Cooper, 1978. Aggregation of the siphonophore Nanomia cara in the Gulf of Maine. Fish. Bull. 76: 281–284.Google Scholar
  43. Thuesen, E. V. & J. J. Childress, 1994. Oxygen consumption rates and metabolic enzyme activities of oceanic California medusae in relation to body size and habitat depth. Biol Bull. 187: 84–98.Google Scholar
  44. Tietze, R. C. & A. M. Clark, 1986. Remotely operated tools for undersea vehicles. In McGuiness, T. (ed.), Current Practices and New Technology in Ocean Engineering, Am. Soc. Mech. Engin. 11: 219–223.Google Scholar
  45. Tusting, R. F. & D. L. Davis, 1993. Laser systems and structured illumination for quantitative undersea imaging. Mar. Technol. Soc. J. 26: 5–12.Google Scholar
  46. Van Der Veer, H. M. & W. Oorthuysen, 1985. Abundance, growth and food demand of the scyphomedusa Aurelia aurita in the western Wedden Sea. Neth. J. Sea Res. 19: 38–44.Google Scholar
  47. Volovik, S. P., Z. A. Myrzoyan & G. S. Volovik, 1993. Mnemiopsis leidyi in the Azov Sea: biology, population dynamics, impact to the ecosystem and fisheries. ICES-CM-1993/L:69: 11 pp.Google Scholar
  48. Youngbluth, M. J., 1984. Manned submersibles and sophisticated instrumentation: Tools for oceanographic research. In Proceedings of SUBTECH 1983 Symposium, Society of underwater technology, London: 335–344.Google Scholar
  49. Youngbluth, M. J., T. G. Bailey & C. A. Jacoby, 1990. Biological explorations in the mid-ocean realm: foods webs, particle flux and technological advancements. In Lin, Y. C. & K. K. Shida (eds), Man in the Sea, Volume II, Best Publishing, San Pedro: 191–208.Google Scholar
  50. Youngbluth, M. J., P. Kremer, T. G. Bailey & C. A. Jacoby, 1988. Chemical composition, metabolic rates and feeding behavior of the midwater ctenophore Bathocyroe fosteri. Mar. Biol. 98: 87–94.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Marsh J. Youngbluth
    • 1
  • Ulf Båmstedt
    • 2
  1. 1.Harbor Branch Oceanographic InstitutionFort PierceU.S.A.
  2. 2.Department of Fisheries and Marine BiologyUniversity of BergenBergenNorway

Personalised recommendations