Advertisement

Reviews in Endocrine and Metabolic Disorders

, Volume 2, Issue 4, pp 395–401 | Cite as

Does Brown Adipose Tissue (BAT) Have a Role in the Physiology or Treatment of Human Obesity?

  • Jean Himms-Hagen
Article
thermogenesis mitochondria uncoupling protein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Himms-Hagen J. Obesity may be due to a malfunctioning of brown fat. Can Med Assoc J 1979;121:1361-1364.Google Scholar
  2. 2.
    Rothwell NJ, Stock MJ. A role for brown adipose tissue in dietinduced thermogenesis. Nature 1979;281:31-35.Google Scholar
  3. 3.
    Thurlby PL, Trayhurn P. The role of thermoregulatory thermo genesis in the development of obesity in genetically-obese (Ob/Ob) mice pair-fed with lean siblings. Br J Nutr 1979;42:377-385.Google Scholar
  4. 4.
    Himms-Hagen, J. Role of thermogenesis in the regulation of energy balance in relation to obesity. Can J Physiol Pharmacol 1989;67:394–401.Google Scholar
  5. 5.
    Himms-Hagen J, Ricquier D. Brown adipose tissue. Bray GA, Bouchard C, James WPT. Handbook of Obesity. New York: Marcel Dekker Inc, 1998;415-441.Google Scholar
  6. 6.
    Himms-Hagen J, Danforth E Jr. The potential role of B3-adrenoceptor agonists in the treatment of obesity and diabetes. Curr Opin Endocrinol Metab 1996;3:59-65.Google Scholar
  7. 7.
    Weyer C, Gautier JF, Danforth E Jr. Development of beta3-adrenoceptor agonists for the treatment of obesity and diabetes--an update. Diabetes Metab (Paris) 1999;25:11-21.Google Scholar
  8. 8.
    Himms-Hagen J. β3-Adrenoceptors in brown and white adipocytes: roles in thermogenesis and energy balance. The β 3-Adrenoceptor. London: Taylor and Francis, 2000;97-119.Google Scholar
  9. 9.
    Oufara S, Barre H, Rouanet JL, Chatonnet J. Adaptation to extreme ambient temperatures in cold-acclimated gerbils and mice. AmJ Physiol 1987;253:R39-R45.Google Scholar
  10. 10.
    Nedergaard J. Golozoubova V. Matthias A, Asadi A, Jacobsson A, Cannon B. UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochim Biophys Acta 2001;1504:82-106.Google Scholar
  11. 11.
    Himms-Hagen J, Harper M-E. Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp Biol Med 2001;226:78-84.Google Scholar
  12. 12.
    Matthias A, Ohlson BE, Fredriksson JM, Jacobsson A, Nedergaard J, Cannon B. Thermogenic responses in brown-fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty acid induced thermogenesis. J Biol Chem 2000;275:25073-25081.Google Scholar
  13. 13.
    Levine JA, Eberhardt NL, Jensen MD. Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science 1999;283:212-214.Google Scholar
  14. 14.
    Levine JA, Schleusner SJ, Jensen MD. Energy expenditure of nonexercise activity. Am J Clin Nutr 2000;72:1451-1454.Google Scholar
  15. 15.
    Ravussin E, Danforth E Jr. Beyond sloth--physical activity and weight gain. Science 1999;283:184-185.Google Scholar
  16. 16.
    Van Itallie TB. Resistance to weight gain during overfeeding: a NEAT explanation. Nutrition Rev 2001;59:48-51.Google Scholar
  17. 17.
    Stock MJ. Gluttony and thermogenesis revisited. Int J Obes Relat Metab Disord 1999;23:1105-1117.Google Scholar
  18. 18.
    Young AJ. Homeostatic responses to prolonged cold exposure: human cold acclimatization. Adaptation to the Environment: Handbook of Physiology, New York: Oxford University Press, 1996;419-438.Google Scholar
  19. 19.
    Schoeller DA. The importance of clinical research: the role of thermogenesis in human obesity. Am J Clin Nutr 2001;73:511-516.Google Scholar
  20. 20.
    Hey EN. The relation between environmental temperature and oxygen consumption in the new-born baby. J Physiol 1969;200:589-603.Google Scholar
  21. 21.
    Encke D, Ely M, Heldmaier G, Klaus S. Physiological approach to maturation of brown adipocytes in primary cell culture. Biochim Biophys Acta 1997;1357:339-347.Google Scholar
  22. 22.
    Himms-Hagen J. Neural and hormonal responses to prolonged cold exposure. Adaptation to the Environment: Handbook of Physiology, New York: Oxford University Press, 1996;439-480.Google Scholar
  23. 23.
    Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 1997;387:90-94.Google Scholar
  24. 24.
    Harper M-E, Himms-Hagen J. Mitochondrial Efficiency: Lessons learned from transgenic mice. Biochim Biophys Acta 2001;1504:159-172.Google Scholar
  25. 25.
    Monemdjou S, Hofmann WE, Kozak LP, Harper ME. Increased mitochondrial proton leak in skeletal muscle mitochondria of UCP1-deficient mice. Am J Physiol 2000;279:E941-E946.Google Scholar
  26. 26.
    Rolfe DF, Brand MD. The physiological significance of mitochon drial proton leak in animal cells and tissues. BiosciRep 1997;17:9-16.Google Scholar
  27. 27.
    Cannon B, Matthias A, Golozoubova V, Ohlson KBE, Andersson U, Jacobsson A, Nedergaard J. Unifying and distinguishing features of brown and white adipose tissues: UCP1 versus other UCPs. Progress in Obesity Research: 8. London: John Libbey 1999;13-26.Google Scholar
  28. 28.
    Houstek J, Vizek K, Pavelka S, Kopecky J, Krejcova E, Hermanska J, Cermakova M. Type II iodothyronine 5′-deiodinase and uncoupling protein in brown adipose tissue of human newborns. J Clin Endocrinol Metab 1993;77:382-387.Google Scholar
  29. 29.
    Croteau W, Davey JC, Gallon VA, St Germain DL. Cloning of the mammalian type II iodothyronine deiodinase. A selenoprotin differentially expressed and regulated in human and rat brain and other tissues. J Clin Invest 1996;98:405-417.Google Scholar
  30. 30.
    Larsen PR. Mammalian type 2 deiodinase sequences; finally, the end of the beginning. J Clin Invest 1996;98:242-243.Google Scholar
  31. 31.
    Granneman JG, Lahners KN. Analysis of human and rodent beta 3-adrenergic receptor messenger ribonucleic acids. Endocrinology 1994;135:1025-1031.Google Scholar
  32. 32.
    Oberkofler H, Dallinger G, Liu YM, Hell E, Krempler F, Patsch W. Uncoupling protein gene: quantification of expression levels in adipose tissues of obese and non-obese humans. J Lipid Res 1997;38:2125-2133.Google Scholar
  33. 33.
    Garruti G. Ricquier D. Analysis of uncoupling protein and its mRNA in adipose tissue deposits of adult humans. Int J Obes Relat Metab Disord 1992;16:383-390.Google Scholar
  34. 34.
    Gonzalez-Barroso MM, Ricquier D, Cassard-Doulcier AM. The human uncoupling protein-1 gene (UCP1): present status and perspectives in obesity research. Obes Rev 2001;1:61-72.Google Scholar
  35. 35.
    Guerra C, Koza RA, Yamashita H, Walsh K, Kozak LP. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J Clin Invest 1998;102:412-420.Google Scholar
  36. 36.
    Koza RA, Hohmann SM, Guerra C, Rossmeisl M, Kozak LP. Synergistic gene interactions control the induction of the mitochondrial uncoupling protein (Ucp1) gene in white fat tissue. J Biol Chem 2000;275:34486-34492.Google Scholar
  37. 37.
    Kozak LP, Koza RA. Mitochondria uncoupling proteins and obesity: molecular and genetic aspects of UCP1. Int J Obes Relat Metab Disord 1999;23Suppl 6:S33-S37.Google Scholar
  38. 38.
    Champigny O, Ricquier D. Evidence from in vitro differentiating cells that adrenoceptor agonists can increase uncoupling protein MRNA level in adipocytes of adult humans. J Lipid Res 1996;37:1907-1914.Google Scholar
  39. 39.
    Caserta F, Tchkonia T, Civelek VN, Prentki M, Brown NF, McGarry JD, Forse RA, Corkey BE, Hamilton JA, Kirkland JL. Fat depot origin affects fatty acid handling in cultured rat and human preadipocytes. Am J Physiol 2001;280:E238-E247.Google Scholar
  40. 40.
    Casteilla L, Cousin B, Laharrague, P., Moulin K, Penicaud L. Plasticity of adipose tissues. Obes Matt 2000;3:5-9.Google Scholar
  41. 41.
    Pénicaud L, Cousin B, Leloup C, Lorsignol A, Casteilla L. The autonomic nervous system, adipose tissue plasticity, and energy balance. Nutrition 2000;16:903-908.Google Scholar
  42. 42.
    Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S. Multilocular fat cells in WAT of CL-316,243-treated rats derive directly from white adipocytes. Am J Physiol 2000;279:C670-C681.Google Scholar
  43. 43.
    Bronnikov G, Houstek J, Nedergaard J. β-Adrenergic, cAMP-mediated stimulation of proliferation of brown fat cells in primary culture. Mediation via beta 1 but not via beta 3 adrenoceptors. JBiol Chem 1992;267:2006-2013.Google Scholar
  44. 44.
    Bronnikov G, Bengtsson T, Kramarova L, Golozoubova V, Cannon B, Nedergaard J. β1 to β3 switch in control of cyclic adenosine monophosphate during brown adipocyte development explains distinct beta-adrenoceptor subtype mediation of proliferation and differentiation. Endocrinology 1999;140:4185-4197.Google Scholar
  45. 45.
    Granneman JG. β3 adrenergic receptors as a therapeutic target for obesity. Obes Pathol Ther 2000;149:343-367.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Jean Himms-Hagen
    • 1
  1. 1.Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada

Personalised recommendations