Growth-dependent properties of KTP crystals and PPKTP structures

  • M. Roth
  • N. Angert
  • M. Tseitlin


Growth of optically uniform and single ferroelectric domain KTP crystals is of prime importance for frequency-conversion applications. In the course of KTP growth from pure self-fluxes the flux becomes enriched in potassium causing a gradual increase of potassium content in the crystal as well. We have shown that such an effect can be well characterized by a corresponding increase in the Curie temperature of the crystal. Establishment of the potassium concentration gradients is followed by charge separation and production of a built-in electric field, which can be enhanced or diminished also by the incorporation of charge-compensating residual impurities. The magnitude of the built-in electric field is directly proportional to the projection of the potassium concentration gradient on the crystal's Z-axis, and it defines the domain direction in immersion seeded or different configurations of the top-seeded growth of KTP crystals. Detailed investigation of the domain formation mechanisms has allowed us to suggest a number of ways of growing single domain crystals, such as top-seeded growth with pulling in the Z-direction. Pulling in the X-direction is shown to yield predominantly bi-domain crystals. The formation of bi-domains and complex domain structures along the growth sector boundaries is explained in terms of edge-like and apex-like growth perturbations, respectively, which are due to temperature fluctuations at the growth interface. The knowledge of parameters influencing the domain formation mechanisms has allowed us to develop a technique for obtaining as-grown periodic domain structures necessary for large aperture (high-power) frequency conversion applications. © 2001 Kluwer Academic Publishers


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. K. ChengandJ. D. Bierlein,Ferroelectrics 142(1993) 209.Google Scholar
  2. 2.
    N. Angert, M. Tseitlin, L. Kaplun, E. YashchinandM. Roth, ibid.142(1994) 117.Google Scholar
  3. 3.
    G. M. LoiaconoandR. A. Stolzenberger,Appl. Phys. Lett. 53(1988) 1498.Google Scholar
  4. 4.
    F. C. Zumsteg, J. D. BierleinandT. E. Gier,J. Appl. Phys. 47(1976) 4980.Google Scholar
  5. 5.
    J. D. BierleinandF. Ahmed,Appl. Phys. Lett. 51(1987) 1328.Google Scholar
  6. 6.
    L. P. Shi, J. Chrosch, J. Y. WangandY. G. Lin,Cryst. Res. Technol. 27(1992) K76.Google Scholar
  7. 7.
    L. K. Cheng, L. T. Cheng, J. Galperin, P. A. Morris HotsenpillerandJ. D. Bierlein,J. Cryst. Growth 137(1994) 107.Google Scholar
  8. 8.
    N. Angert, L. Kaplun, M. Tseitlin, E. YashchinandM. Roth, ibid.137(1994) 116.Google Scholar
  9. 9.
    M. N. SatyanaryanandH. L. Bhat, ibid.181(1997) 281.Google Scholar
  10. 10.
    J. A. Armstrong, N. Blombergen, J. DucuingandP. S. Pershan,Phys. Rev. 127(1962) 1918.Google Scholar
  11. 11.
    D. Eger, M. Oron, M. KatzandA. Zussman,Appl. Phys. Lett. 64(1994) 3208.Google Scholar
  12. 12.
    A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. KatzandD. Eger,Opt. Commun. 142(1997) 265.Google Scholar
  13. 13.
    G. M. Loiacono, T. F. McgeeandG. Kostecky,J. Cryst. Growth 104(1990) 389.Google Scholar
  14. 14.
    R. J. Bolt, ibid.126(1993) 175.Google Scholar
  15. 15.
    N. Angert, M. Tseitlin, E. YashchinandM. Roth,Appl. Phys. Lett. 67(1995) 1941.Google Scholar
  16. 16.
    M. E. Hagerman, V. L. KozhevnikovandK. R. Poeppelmeier,Chem. Mater. 5(1993) 1211.Google Scholar
  17. 17.
    P. A. Morris, A. Foretti, J. D. BierleinandG. M. Loiacono,J. Cryst. Growth 109(1991) 367.Google Scholar
  18. 18.
    M. G. Roelofs,J. Appl. Phys. 65(1989) 4976.Google Scholar
  19. 19.
    V. D. Kugel, G. Rosenman, N. Angert, E. YashchinandM. Roth, ibid.76(1994) 4823.Google Scholar
  20. 20.
    V. A. Kolesinskas, N. I. Pavlova, I. S. RezandJ. P. Grigas,Sov. Phys.-Collect. 22(1982) 68.Google Scholar
  21. 21.
    T. Sasaki, A. Miyamoto, A. YokotaniandS. Nakai,J. Cryst. Growth 128(1993) 950.Google Scholar
  22. 22.
    L. T. Cheng, L. K. Cheng, R. L. HarlowandJ. D. Bierlein,Appl. Phys. Lett. 64(1994) 155.Google Scholar
  23. 23.
    V. I. Chani, K. Shimamura, Sh. EndoandT. Fukuda,J. Cryst. Growth 173(1997) 117.Google Scholar
  24. 24.
    K. T. Stevens, L. E. Halliburton, M. Roth, N. AngertandM. Tseitlin,J. Appl. Phys. 88(2000) 6239.Google Scholar
  25. 25.
    R. J. BoltandW. J. P. Enckevort,J. Cryst. Growth 119(1992) 329.Google Scholar
  26. 26.
    A. A. Chernov, ibid.24/25(1974) 11.Google Scholar
  27. 27.
    J. A. Burton, R. C. PrimandW. P. Slichter,J. Chem. Phys. 21(1953) 1987.Google Scholar
  28. 28.
    D. ElwellandH. J. Scheel, “Crystal Growth from Hightemperature Solutions” (Academic Press, New York, 1975) p. 294.Google Scholar
  29. 29.
    F. J. Kumar, D. Jayaraman, C. SubramanianandP. Ramasamy,J. Cryst. Growth 137(1994) 535.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • M. Roth
    • 1
  • N. Angert
    • 2
  • M. Tseitlin
    • 3
  1. 1.School of Applied ScienceThe Hebrew UniversityJerusalemIsrael
  2. 2.Raicol Crystals Ltd., Industrial ZoneYehudIsrael
  3. 3.The Research InstituteCollege of Judea and SamariaArielIsrael

Personalised recommendations