Advertisement

Hydrobiologia

, Volume 451, Issue 1–3, pp 287–294 | Cite as

A novel cilia-based feature within the food grooves of the ctenophore Mnemiopsis mccradyi Mayer

  • Anthony G. Moss
  • Rebecca C. Rapoza
  • Lisa Muellner
Article

Abstract

We describe a novel compound ciliary structure (g-cilium) from the food groove of the lobate ctenophore Mnemiopsis mccradyi. G-cilia are small, flat compound ciliary organelles that are oriented with their tips pointing toward the mouth. Typically three to four rows of g-cilia line the inner surface of the tentacular groove, which together with the transport groove, make up the food groove. G-cilium cells are ∼11.4 μm long and ∼4.2 μm wide at the g-cilium base. The g-cilium itself is ∼3.4 μm long and tapers to a flat, sharp tip. G-cilia are not motile but are surrounded by many hundreds of smaller, actively motile cilia that beat with orally-directed effective strokes. G-cilia contain ∼50 conventional `9+2' cilia embedded in a fibrous core that arises from the cell body. In addition, g-cilia contain mitochondria, thousands of small membrane-bounded vesicles and rod bacteria. G-cilia basal bodies are anchored by large, strongly-banded rootlets that extend approximately the entire length of the cell. G-cilia may have organizational, sensory and/or secretory function within the feeding apparatus. Their placement strongly suggests that they play critical roles in feeding. They may enhance the efficiency of prey capture and so contribute to M. mccradyi's well-known voracious appetite. By enhancing prey capture they probably play a critical role in the capacity of this organism to follow prey dynamics, so contributing to dense blooms in mid-late summer in coastal regions.

food groove plankton feeding tentacle compound cilium actin rod bacteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afzelius, B. A., 1961. The fine structure of the cilia from ctenophore swimming-plates. J. Biophys. Biochem. Cytol. 9: 383–394.PubMedGoogle Scholar
  2. Bargmann, W., K. Jacob & A. Rast, 1972. Über Tentakel und Colloblasten der Ctenophore Pleurobrachia pileus. Z. Zellforsch. 123: 121–152.PubMedGoogle Scholar
  3. Barlow, D. & M. Sleigh, 1993. Water propulsion speeds and power output by comb plates of the ctenophore Pleurobrachia pileus under different conditions. J. exp. Biol. 183: 149–163.Google Scholar
  4. Bumann, D. & G. Puls, 1997. The ctenophore Mnemiopsis leidyi has a flow-through system for digestion with three consecutive phases of extracellular digestion. Physiol. Zool. 70: 1–6.PubMedGoogle Scholar
  5. Chun, C., 1880. Die Ctenophoran des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. Flora und Fauna des Golfes von Neapel, Vol. 1, Engelmann, Leipzig: 1–311.Google Scholar
  6. Cowan, J. H. & E. D. Houde, 1993. Relative predation potentials of scyphomedusae, ctenophores and planktivorous fish on ichthyoplankton in Chesapeake Bay. Mar. Ecol. Prog. Ser. 95: 55–65.Google Scholar
  7. Dentler, W. L., 1981. Microtubule-membrane interactions in ctenophore swimming plate cilia. Tissue Cell 13: 197–208.PubMedGoogle Scholar
  8. Estes, A. M., B. S. Reynolds & A. G. Moss, 1997. Trichodina ctenophorii n. sp., a novel symbiont of ctenophores of the northern coast of the Gulf of Mexico. J. Euk. Microbiol. 44: 420–426.Google Scholar
  9. Hernandez-Nicaise, M-L., 1974. Ultrastructural evidence for a sensory-motor neuron in Ctenophora. Tissue Cell 6: 43–47.PubMedGoogle Scholar
  10. Horridge, G. A., 1965. Macrocilia with numerous shafts from the lips of the ctenophore Beroë. Proc. roy. Soc. Lond., 162B: 351–364.Google Scholar
  11. Howard, J., W. M. Roberts & A. J. Hudspeth, 1988. Mechanoelectrical transduction by hair cells. Ann. Rev. Biophys. Biophys. Chem. 17: 99–124.Google Scholar
  12. Kuzirian, A. M., D. L. Alkon & L. G. Harris, 1981. An infraciliary network in statocyst hair cells. J. Neurocytol. 10: 497–514.PubMedGoogle Scholar
  13. Lowe, B. T., 1997. Studies on calcium regulation of motile, mechanoresponsive statocyst cilia and locomotory cilia in ctenophores. Ph.D. Thesis, Boston University: 180 pp.Google Scholar
  14. Machemer, H. & S. Machemer-Röhnisch, 1984. Mechanical and electric correlates of mechanoreceptor activation of the ciliated tail in Paramecium. J. Comp. Physiol. 154A: 273–278.Google Scholar
  15. Matsumoto, G. I. & W. H. Hamner, 1988. Modes of water manipulation by the lobate ctenophore Leucothea sp. Mar. Biol. 97: 551–558.Google Scholar
  16. Monteleone, D. M. & L. E. Duguay, 1988. Laboratory studies of predation by the ctenophore Mnemiopsis leidyi on the early stages in the life history of the bay anchovy, Anchoa mitchilli. J. Plankton Res. 10: 359–372.Google Scholar
  17. Purcell, J. E., T. A. Shiganova, M. B. Decker & E. D. Houde, 2001. The ctenophore Mnemiopsis in native and exotic habitats: U.S. estuaries versus the Black Sea basin. Hydrobiologia 451 (Dev. Hydrobiol. 155): 145–175.Google Scholar
  18. Reeve, M. R. & M. A. Walter, 1978. Nutritional ecology of ctenophores – a review of recent research. Adv. mar. Biol. 15: 249–287.Google Scholar
  19. Stommel, E. W., R. E. Stephens & D. L. Alkon, 1980. Motile statocyst cilia transmit rather than directly transduce mechanical stimuli. J. Cell Biol. 87: 652–662.PubMedGoogle Scholar
  20. Sullivan, B. K., D. Van Keuren & M. Clancy, 2001. Timing and size of blooms of the ctenophore Mnemiopsis leidyi in relation to temperature in Narragansett Bay, RI. Hydrobiologia, 451 (Dev. Hydrobiol. 155): 113–120.Google Scholar
  21. Swanberg, N., 1974. The feeding behavior of Beroe ovata. Mar. Biol. 24: 69–76.Google Scholar
  22. Tamm, S. L., 1982. Ctenophora. In Shelton, G. A. B. (ed.), Electrical Conduction and Behaviour in 'simple' Invertebrates. Clarendon Press, Oxford: 266–358.Google Scholar
  23. Tamm, S. L. & A. G. Moss, 1985. Unilateral ciliary reversal and motor responses during prey capture by the ctenophore Pleurobrachia pileus. J. exp. Biol. 114: 443–461.PubMedGoogle Scholar
  24. Tamm, S. L. & S. Tamm, 1981. Ciliary reversal without rotation of axonemal structures in ctenophore comb plates. J. Cell Biol. 89: 495–509.PubMedGoogle Scholar
  25. Tamm, S. & S. L. Tamm, 1991. Actin pegs and ultrastructure of presumed sensory receptors of Beroë (Ctenophora). Cell Tissue Res. 264: 151–159.PubMedGoogle Scholar
  26. Vinogradov, M. Y., E. A. Shushkina, E. I. Musayeva & P. Yu. Sorokin, 1989. A newly acclimated species in the Black Sea: The ctenophore Mnemiopsis leidyi (Ctenophora: Lobata). Oceanology 29: 220–224.Google Scholar
  27. Waggett, R. & J. H. Costello, 1999. Capture mechanisms used by the lobate ctenophore, Mnemiopsis leidyi, preying on the copepod Acartia tonsa. J. Plankton Res. 21: 2037–2052.Google Scholar
  28. Weiderhold, M. L., 1976. Mechanosensory transduction in 'sensory' and 'motile' cilia. Ann. Rev. Biophys. Bioeng. 5: 39–62.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Anthony G. Moss
    • 1
  • Rebecca C. Rapoza
    • 2
  • Lisa Muellner
    • 1
  1. 1.Dept. Biological SciencesAuburn UniversityAuburnU.S.A.
  2. 2.Biology Dept.Woods Hole Oceanographic InstitutionWoods HoleU.S.A.

Personalised recommendations