Journal of Computer-Aided Materials Design

, Volume 7, Issue 3, pp 195–201 | Cite as

Three-dimensional Schwoebel–Ehrlich barrier

  • S.J. Liu
  • E.G. Wang
  • C.H. Woo
  • Hanchen Huang


It is well known that the Schwoebel–Ehrlich barrier affects, and even dictates, surface microstructure evolution – such as the transition of growth modes from layer-by-layer to island growth. The conventional Schwoebel–Ehrlich barrier refers to the case when an adatom diffuses down an island of one monolayer. During thin film deposition, an adatom often needs to diffuse down an island of multiple layers. For the latter, we demonstrate and calculate the corresponding Schwoebel–Ehrlich barrier – which we call three-dimensional Schwoebel–Ehrlich barrier. Our calculations show that the three-dimensional Schwoebel–Ehrlich barrier can be large even if its conventional counterpart is small – as in aluminum. We further propose and demonstrate a possible process of engineering surface faceting and film texture, by modifying the three-dimensional Schwoebel–Ehrlich barrier.

Faceting Schwoebel–Ehrlich barrier Surfactant Texture competition. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vaidya, S. and Sinha, A.K., Thin Solid Film, 75 (1981) 523.CrossRefGoogle Scholar
  2. 2.
    Greene, J., Sundgren, J., Hultman, L., Petrov, L., and Bergstrom, D., Appl. Phys. Lett., 67 (1995) 2928.CrossRefGoogle Scholar
  3. 3.
    Onoda, H., Kageyama, M., and Hashimoto, K., J. Appl. Phys., 77 (1995) 885.CrossRefGoogle Scholar
  4. 4.
    Schwoebel, R.L. and Shipsey, E.J., J. Appl. Phys., 37 (1966) 3682.CrossRefGoogle Scholar
  5. 5.
    Ehrlich, G. and Hudda, F.G., J. Chem. Phys., 44 (1966) 1039.CrossRefGoogle Scholar
  6. 6.
    Ehrlich, G., Surf. Sci., 299/300 (1994) 628.CrossRefGoogle Scholar
  7. 7.
    Gölzhäuser, A. and Ehrlich, G., Phys. Rev. Lett., 77 (1996) 1334.CrossRefGoogle Scholar
  8. 8.
    Wang, S.C. and Ehrlich, G., Phys. Rev. Lett., 79 (1997) 4234.CrossRefGoogle Scholar
  9. 9.
    Kyuno, K. and Ehrlich, G., Phys. Rev. Lett., 84 (2000) 2658.CrossRefGoogle Scholar
  10. 10.
    Zhang, Z. and Lagally, M.G., Phys. Rev. Lett., 72 (1994) 693.CrossRefGoogle Scholar
  11. 11.
    Zhang, Z. and Lagally, M.G., Science, 276 (1997) 377.CrossRefGoogle Scholar
  12. 12.
    Kandel, D., Phys. Rev. Lett., 78 (1997) 499.CrossRefGoogle Scholar
  13. 13.
    Kandel, D. and Kaxiras, E., Phys. Rev. Lett., 75 (1995) 2742.CrossRefGoogle Scholar
  14. 14.
    Esch, S., Hohage, M., Michely, T., and Comsa, G., Phys. Rev. Lett., 72 (1994) 518.CrossRefGoogle Scholar
  15. 15.
    van der Vegt, H.A., Breeman, M., Ferrer, S., Etgens, V.H., Torrelles, X., Fajardo, P., and Vlieg, E., Phys. Rev., B51 (1995) 14806.Google Scholar
  16. 16.
    Jacobsen, J., Jacobsen, K.W., Stoltze, P., and Nø rskov, K., Phys. Rev. Lett., 74 (1995) 2295.CrossRefGoogle Scholar
  17. 17.
    Kodiyalam, S., Khor, K.E., and Sarma, S.D., Phys. Rev., B53 (1996) 9913.Google Scholar
  18. 18.
    Feibelman, P.J., Phys. Rev. Lett., 81 (1998) 168.CrossRefGoogle Scholar
  19. 19.
    Kurpick, U. and Rahman, T.S., Phys. Rev., B57 (1998) 2482.Google Scholar
  20. 20.
    Ramana Murty, M.V. and Cooper, B.H., Phys. Rev. Lett., 83 (1999) 352.CrossRefGoogle Scholar
  21. 21.
    Rottler, J. and Maass, P., Phys. Rev. Lett., 83 (1999) 3490.CrossRefGoogle Scholar
  22. 22.
    Schinzer, S., Koehler, S., and Reents, G., Euro. Phys. J., B15 (2000) 161.Google Scholar
  23. 23. a.
    Stumpf, R. and Scheffler, M., Phys. Rev. Lett., 72 (1994) 254.CrossRefGoogle Scholar
  24. 23. b.
    Stumpf, R. and Scheffler, M., Phys. Rev., B53 (1996) 4958.Google Scholar
  25. 24.
    Bogicevic, A., Stroemquist, J., and Lundqvist, B.I., Phys. Rev. Lett., 81 (1998) 637.CrossRefGoogle Scholar
  26. 25.
    Bockstedte, M., Liu, S.J., Pankratov, O., Woo, C.H., and Huang, H., Comp. Mater. Sci. (2001) in press.Google Scholar
  27. 26.
    Baumann, F.H., Chopp, D.L., Diaz de la Rubia, T., Gilmer, T.H., Greene, J.E., Huang, H., Kodambaka, S., O'Sullivan, P., and Petrov, I., MRS Bulletin, 26 (2001) 182.Google Scholar
  28. 27.
    Huang, H., Gilmer, G.J., and Diaz de la Rubia, T., J. Appl. Phys., 84 (1998) 3636.CrossRefGoogle Scholar
  29. 28.
    Huang, H. and Gilmer, G.H., J. Comp. Aid. Mat. Des., 6 (1999) 117.CrossRefGoogle Scholar
  30. 29.
    Gilmer, G.H., Huang, H., Diaz de la Rubia, T., and Roland, C., Comp. Mater. Sci., 12 (1998) 354.CrossRefGoogle Scholar
  31. 30.
    Gilmer, G.H., Huang, H., Diaz de la Rubia, T., Torre, J.D., and Barumann, F., Thin Solid Films, 365 (1999) 189.CrossRefGoogle Scholar
  32. 31.
    Huang, H. and Gilmer, G.H., Comp. Mater. Sci. (2001) in press.Google Scholar
  33. 32.
    Huang, H. and Gilmer, G.H., J. Comp. Aid. Mat. Des. 7 (2001) 203.CrossRefGoogle Scholar
  34. 33.
    Voter, A.F., Phys. Rev., B34 (1986) 6819.Google Scholar
  35. 34.
    Liu, S.J., Wang, E.G., Woo, C.H., and Huang, H., Adv. Plasma Sci., 3 (2001) 125.Google Scholar
  36. 35.
    Hsiung, L., private communication.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • S.J. Liu
  • E.G. Wang
  • C.H. Woo
  • Hanchen Huang

There are no affiliations available

Personalised recommendations