, Volume 451, Issue 1–3, pp 223–227 | Cite as

Flow and prey capture by the scyphomedusa Phyllorhiza punctata von Lendenfeld, 1884

  • Isabella D'Ambra
  • John H. Costello
  • Flegra Bentivegna


The mechanical basis of prey capture and behaviour of Phyllorhiza punctata von Lendenfeld, 1884, as with most members of the Order Rhizostomeae, has not been described. Free-swimming medusae were videotaped in order to quantitatively describe the feeding process of P. punctata. Kinematic data demonstrated that adult medusae were surrounded by relatively high Re (102–103) flows while swimming. Therefore, momentum dominated these flows and the motions of particles entrained in the fluid surrounding swimming P. punctata. Artemia salina nauplii entrained within these flows contacted two principle capture surfaces: the oral arm cylinder and the underside of the subumbrellar surface. Prey were ingested by small polyp-like mouthlets located on these surfaces. Ingestion followed capture at these sites. P. punctata's body morphology is highly modified to channel flows into these capture surfaces and feeding is dependent upon this pattern. Swimming activity, and hence the creation of flows used for prey capture, is continuous, as is feeding, and plays a central role in this medusa's foraging behaviour.

jellyfish feeding swimming behaviour 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Costello, J. H. & S. P. Colin, 1994. Morphology, fluid motion and predation by the scyphomedusa Aurelia aurita. Mar. Biol. 121: 327–334.Google Scholar
  2. Costello, J. H. & S. P. Colin, 1995. Flow and feeding by swimming scyphomedusae. Mar. Biol. 124: 399–406.Google Scholar
  3. Fancett, M. S., 1988. Diet and selectivity of scyphomedusae from Port Phillip Bay, Australia. Mar. Biol. 98: 503–509.Google Scholar
  4. García, J. R. & E. Durbin, 1993. Zooplanktivorous predation by large scyphomedusae Phyllorhiza punctata (Cnidaria: Scyphozoa) in Laguna Joyuda. J. exp. mar. Biol. Ecol. 173: 71–93.Google Scholar
  5. Hamner, W. M. & I. R. Hauri, 1981. Long-distance horizontal migrations of zooplankton (Scyphomedusae: Mastigias). Limnol. Oceanogr. 26: 414–423.Google Scholar
  6. Hsieh, Y-H. P., P-M. Leong & J. Rudloe, 2001. Jellyfish as food. Hydrobiologia, this volume.Google Scholar
  7. Lange, J. & R. Kaiser, 1995. The maintenance of pelagic jellyfish in the Zoo-Aquarium Berlin. Int. Zoo Yb. 34: 59–64.Google Scholar
  8. Larson, R. J., 1991. Diet, prey selection and daily ration of Stomolophus meleagris, a filter-feeding scyphomedusa from the NE Gulf of Mexico. Estuar. coast. shelf Sci. 32: 511–525.Google Scholar
  9. Mayer, A. G., 1910. Medusae of theWorld III. The Scyphomedusae. Carnegie Inst. of Washington, Washington, D.C.: 733 pp.Google Scholar
  10. Mianzan, H. W. & P. S. Cornelius, 1999. Cubomedusae and scyphomedusae. In Boltovskoy, D. (ed.), South Atlantic Zooplankton. Backhuys Publishers, Leiden: 513–559.Google Scholar
  11. Omori, M. & E. Nakano, 2001. Jellyfish fishery in southeast Asia. Hydrobiologia 451 (Dev. Hydrobiol. 155): 19–26.Google Scholar
  12. Shanks, A. L & W. M. Graham, 1987. Oriented swimming in the jellyfish Stomolophus meleagris L. Agassiz (Scyphozoan: Rhizostomida). J. exp. mar. Biol. Ecol. 108: 159–169.Google Scholar
  13. Sullivan, B. K., J. R. Garcia & G. Klein-MacPhee, 1994. Prey selection by the scyphomedusan predator Aurelia aurita. Mar. Biol. 121: 335–341.Google Scholar
  14. Vogel, S., 1994. Life in moving fluids: the physical biology of flow. Princeton Univ. Press, Princeton: 467 pp.Google Scholar
  15. Von Ledenfeld, R., 1884. The scyphomedusae of the Southern Hemisphere. Proc. linn. Soc. New South Wales 9: 259–306.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Isabella D'Ambra
    • 1
  • John H. Costello
    • 2
  • Flegra Bentivegna
    • 1
  1. 1.Stazione Zoologica `Anton Dohrn'NaplesItaly
  2. 2.Biology DepartmentProvidence CollegeProvidenceU.S.A.

Personalised recommendations