Skip to main content
Log in

On the relationship between the non-photochemical quenching of the chlorophyll fluorescence and the Photosystem II light harvesting efficiency. A repetitive flash fluorescence induction study

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Plants respond to excess light by a photoprotective reduction of the light harvesting efficiency. The notion that the non-photochemical quenching of chlorophyll fluorescence can be reliably used as an indicator of the photoprotection is put to a test here. The technique of the repetitive flash fluorescence induction is employed to measure in parallel the non-photochemical quenching of the maximum fluorescence and the functional cross-section (σPS II) which is a product of the photosystem II optical cross-section aPS II and of its photochemical yield ΦPS II (σ PS II = aPS II ΦPS II). The quenching is measured for both, the maximum fluorescence found in a single-turnover flash (FM ST) and in a multiple turnover light pulse (FM MT). The experiment with the diatom Phaeodactylum tricornutum confirmed that, in line with the prevalent model, the PS II functional cross-section σ PS II is reduced in high light and restored in the dark with kinetics and amplitude that are closely matching the changes of the FM ST and FM MT quenching. In contrast, a poor correlation between the light-induced changes in the PS II functional cross-section σ PS II and the quenching of the multiple-turnover FM MT fluorescence was found in the green alga Scenedesmus quadricauda. The non-photochemical quenching in Scenedesmus quadricauda was further investigated using series of single-turnover flashes given with different frequencies. Several mechanisms that modulate the fluorescence emission in parallel to the QA redox state and to the membrane energization were resolved and classified in relation to the light harvesting capacity of Photosystem II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arsalane W, Rousseau B and Duval J-C (1994) Influence of the pool size of the xanthophyll cycle on the effects of light stress in a diatom: Competition between photoprotection and photoinhibition. Photochem Photobiol 60: 237–243

    CAS  Google Scholar 

  • Bilger W and Schreiber U (1986) Energy-dependent quenching of dark-level chlorophyll fluorescence in intact leaves. Photosynth Res 10: 303–308

    Article  CAS  Google Scholar 

  • Breton J, Geacintov NE and Swenberg CE (1979) Quenching of fluorescence by triplet excited states in chloroplasts. Biochim Biophys Acta 548: 616–635

    Article  PubMed  CAS  Google Scholar 

  • Bruce D, Samson G and Carpenter C (1997) The origins of non-photochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by P680+ in Photosystem II enriched membranes at low pH. Biochemistry 36: 749–755

    Article  PubMed  CAS  Google Scholar 

  • Butler WL (1978) Energy distribution in the photochemical apparatus of photosynthesis. Annu Rev Plant Physiol 29: 345–378

    Article  CAS  Google Scholar 

  • Christen G, Reifarth F and Renger G (1998) On the origin of the ′35-μs kinetics' of P680+• reduction in Photosystem II with an intact water oxidising complex. FEBS Lett 429: 49–52

    Article  PubMed  CAS  Google Scholar 

  • Chylla RA and Whitmarsh J (1989) Inactive Photosystem II coplexes in leaves. Turnover rate and quantification. Plant Physiol 90: 765–772

    PubMed  CAS  Google Scholar 

  • Dau H (1994) Short-term adaptation of plants to changing light intensities and its relation to Photosystem II photochemistry and fluorescence emission. J Photochem Photobiol B 26: 3–27

    Article  CAS  Google Scholar 

  • Delosme R (1967) Etude de l'induction de fluorescence des algues vertes et des chloroplastes au début d'une illumination intense. Biochim Biophys Acta 143: 108–128

    Article  PubMed  CAS  Google Scholar 

  • Delosme R (1971) New results about chlorophyll fluorescence ‘in vivo’. In: Forti G and Melandri A(eds) Proceedings of 2nd International Congress on Photosynthesis, Stresa, pp 187–195. W Junk Publishers, The Hague

    Google Scholar 

  • Duysens LNM and Sweers HE (1963) Mechanism of the two photochemical reactions in algae as studied by means of fluorescence. In: Japanese Society of Plant Physiologists (eds) Studies on Microalgae and Photosynthetic Bacteria, pp 353–372. University of Tokyo Press, Tokyo

    Google Scholar 

  • France LL, Geacintov NE, Breton J and Valkunas L (1992) The dependence of the degrees of sigmoidicities of fluorescence induction curve in spinach chloroplasts on the duration of actinic pulses in pump-probe experiments. Biochim Biophys Acta 1101: 105–119

    CAS  Google Scholar 

  • Gorbunov MY, Kolber ZS and Falkowski PG (1999) Measuring photosynthetic parameters in individual algal cells by Fast Repetition Rate fluorometry. Photosynth Res 62: 141–153

    Article  CAS  Google Scholar 

  • Gorbunov MY, Falkowski PG and Kolber ZS (2000) Measurement of photosynthetic parameters in benthic organisms in situ using a SCUBA-based fast repetition rate fluorometer. Limnol Oceanogr 45: 242–245

    Article  Google Scholar 

  • Holzwarth AR (1995) Data analysis of time-resolved measurements. In Amesz J and Hoff AJ (eds) Biophysical Techniques in Photosynthesis, pp 75–92. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Horton P and Ruban AV (1992) Regulation of Photosystem II. Photosynth Res 34: 375–385

    Article  CAS  Google Scholar 

  • Horton P, Ruban AV and Walters RG (1994) Regulation of light harvesting in green plants. Indication by nonphotochemical quenching of chlorophyll fluorescence. Plant Physiol 106: 415–420

    PubMed  CAS  Google Scholar 

  • Joliot A and Joliot P (1964) Etudes cinétique de la réaction photochimique libérant l'oxygène au cours de la photosynthèse. CR Acad Sci Paris 258: 4622–4625

    CAS  Google Scholar 

  • Joliot P and Joliot A (1971) Studies on the quenching properties of the photosystem II electron acceptor. In: Forti G and Melandri A (eds) Proceedings of the 2nd International Congress on Photosynthesis, pp 187–195. W Junk Publishers, The Hague

    Google Scholar 

  • Joliot P, Barbieri B and Chabaud R (1969) Un Noveau Modèle des Centres Photochimiques du Système II. Photochem Photobiol 10: 309–329

    CAS  Google Scholar 

  • Joliot P, Joliot A, Bouges B and Barbieri B (1971) Studies of Photosystem II photocenters by comparative measurements of luminescence, fluorescence and oxygen emission. Photochem Photobiol 14: 287–305

    CAS  Google Scholar 

  • Jursinic P (1981) Investigation of double turnovers in Photosystem II charge separation and oxygen evolution with excitation flashes of different duration. Biochim Biophys Acta 635: 38–52

    Article  PubMed  CAS  Google Scholar 

  • Koblížek M, Ciscato M, Komenda J, Kopecký J, Šiffel P and Masojídek J (1999) Photoadaptation in the green alga Spongiochloris sp. A three-fluorometer study. Photosynthetica 37: 307–323

    Article  Google Scholar 

  • Kok B, Forbush B and McGloin M (1970) Co-operation of charges in photosynthetic O2 evolution. I. A linear four step mechanism. Photochem Photobiol 11: 457–475

    PubMed  CAS  Google Scholar 

  • Kolber Z and Falkowski PG (1993) Use of active fluorescence to estimate phytoplankton photosynthesis In situ. Limnol Oceanogr 38: 1646–1665

    Article  CAS  Google Scholar 

  • Kolber Z, Prášil O and Falkowski P (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate technique. I. Defining methodology and experimental protocols. Biochim Biophys Acta 1367: 88–106

    Article  PubMed  CAS  Google Scholar 

  • Kramer DM, Robinson HR and Crofts AR (1990) A portable multi-flash kinetic fluorometer for measurements of donor and acceptor reactions of Photosystem 2 in leaves of intact plants under field conditions. Photosyth Res 26: 181–193

    Article  CAS  Google Scholar 

  • Kramer DM, Di Marco G and Loreto F (1995) Contribution of plastoquinone quenching to saturation pulse-induced rise of chlorophyll fluorescence in leaves In: Mathis P (ed) Photosynthesis: From Light to Biosphere, Vol I, pp 147–150. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Krause GH, Vernotte C and Briantais J-M (1982) Photoinduced quenching of chlorophyll fluorescence in intact chloroplasts and algae. Biochim Biophys Acta 679: 116–124

    Article  CAS  Google Scholar 

  • Lavergne J and Trissl H-W (1995) Theory of fluorescence induction in Photosystem II: Derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restric152 ted energy transfer between photosynthetic units. Biophys J 68: 2474–2492

    PubMed  CAS  Google Scholar 

  • Lavorel J (1959) Induction of fluorescence in quinone poisoned Chlorella cells. Plant Phys 34: 204–209

    Google Scholar 

  • Lazár D (1999) Chlorophyll a fluorescence induction. Biochim Biophys Acta 1412: 1–28

    Article  PubMed  Google Scholar 

  • Malkin S and Kok B (1966) Fluorescence induction studies in isolated chloroplasts. I. Number of components involved in the reaction and quantum yields. Biochim Biophys Acta 126: 413–432

    PubMed  CAS  Google Scholar 

  • Masojídek J, Torzillo G, Koblížek M, Kopecký J, Bernardini P, Sacchi A and Komenda J (1999) Photoadaptation of two Chlorophyta (Scenedesmus and Chlorella) in laboratory and outdoor cultures: Changes of chlorophyll fluorescence quenching and the xanthophyll cycle. Planta 209: 126–135

    Article  PubMed  Google Scholar 

  • Mauzerall D (1972) Light-induced fluorescence changes in Chlorella, and the primary photoreactions for the production of oxygen. Proc Natl Acad Sci USA 69: 1358–1362

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux C and Allen JF (1986) The state 2 transition in the cyanobacterium Synechococcus 6301 can be driven by respiratory electron flow into the plastoquinone pool. Biochim Biophys Acta 205: 155–160

    CAS  Google Scholar 

  • Munday JCM and Govindjee (1969) Light-induced changes in the fluorescence yield of chlorophyll a in vivo. III. The dip and the peak on the fluorescence transient of Chlorella pyrenoidosa. Biophys J 9: 1–21

    Article  PubMed  CAS  Google Scholar 

  • Nedbal L, Trtílek M and Kaftan D (1999) Flash Fluorescence Induction: A novel method to study regulation of Photosystem II. J Photochem Photobiol B 48: 154–157

    Article  CAS  Google Scholar 

  • Olaizola M, La Roche J, Kolber Z and Falkowski PG (1994) Nonphotochemical fluorescence quenching and the diadinoxanthin cycle in marine diatom. Photosynt Res 41: 357–370

    Article  CAS  Google Scholar 

  • Reifarth F, Christen G and Renger G (1997) Fluorometric equipment for monitoring P680+• reduction in PS II preparations and green leaves. Photosynth Res 51: 231–242

    Article  CAS  Google Scholar 

  • Samson G and Bruce D (1996) Origins of the low yield of chlorophyll a fluorescence induced by single turnover flash in spinach thylakoids. Biochim Biophys Acta 1276: 147–153

    Article  Google Scholar 

  • Samson G, Prášil O and Yaakoubd B (1999) Photochemical and thermal phases of chlorophyll a fluorescence. Photosynthetica 37: 163–182

    Article  CAS  Google Scholar 

  • Schreiber U and Krieger A (1996) Two fundamentally different types of variable chlorophyll fluorescence in vivo. FEBS Lett 397: 131–135

    Article  PubMed  CAS  Google Scholar 

  • Schreiber U and Neubauer C (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination. II. Partial control by the photosystem II donor side and possible ways of interpretation. Z Naturforsch 42c: 1255–1264

    Google Scholar 

  • Schreiber U, Schliwa U and Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10: 51–62

    Article  CAS  Google Scholar 

  • Schweitzer RH and Brudvig GW(1997) Fluorescence quenching by chlorophyll cations in Photosystem II. Biochemistry 36: 11351–11359

    Article  PubMed  CAS  Google Scholar 

  • Šetlík I, Šetlíková E, Masojídek J, Zachleder V, Kalina T and Mader P (1981) The effect of translantion and transcription inhibitors on the development of the photosynthetic apparatus in cell cycles of Scenedesmus quadricauda. In: Akoyunoglou G (ed) Photosynthesis Vol V. Chloroplast Development, pp 481–490. Balaban International Science Services, Philadelphia

    Google Scholar 

  • Shinkarev VP, Xu C, Govindjee and Wraight CA (1997) Kinetics of the oxygen evolution step in plants determined from flashinduced chlorophyll a fluorescence. Photosynth Res 51: 43–49

    Article  CAS  Google Scholar 

  • Sorokin EM (1985) The induction curve of chlorophyll a fluorescence in DCMU-treated chloroplasts and its properties. Photochem Photobiol 9: 3–19

    CAS  Google Scholar 

  • Strasser RJ (1981) The grouping model of plant photosynthesis: Heterogeneity of photosynthetic units in thylakoids. In: Akoyunoglou G (ed) Photosynthesis III. Structure and Molecular Organisation of the Photosynthetic Apparatus, pp 727–737. Balaban International Science Services Philadelphia

    Google Scholar 

  • Strasser RJ, Srivastava A and Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61: 32–42

    CAS  Google Scholar 

  • Trtílek M, Kramer DM, Koblížek M and Nedbal L (1997) Dualmodulation LED kinetic fluorometer. J Luminesc 72–74: 597–599

    Article  Google Scholar 

  • Valkunas L, Geacintov NE, France L and Breton J (1991) The dependence of shapes of fluorescence induction curves in chloroplasts on the duration of illumination pulses. Biophys J 59: 397–408

    CAS  PubMed  Google Scholar 

  • Vasil'ev S and Bruce D (1998) Nonphotochemical quenching of excitation energy in Photosystem II. A picosecond time-resolved study of the low yield of chlorophyll a fluorescence induced by single-turnover flash in isolated spinach thylakoids. Biochemistry 37: 11046–1105

    Article  PubMed  Google Scholar 

  • Zankel KL (1973) Rapid fluorescence changes observed in chloroplasts: Their relationship to the O2 evolving system. Biochim Biophys Acta 325: 138–148

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Nedbal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koblížek, M., Kaftan, D. & Nedbal, L. On the relationship between the non-photochemical quenching of the chlorophyll fluorescence and the Photosystem II light harvesting efficiency. A repetitive flash fluorescence induction study. Photosynthesis Research 68, 141–152 (2001). https://doi.org/10.1023/A:1011830015167

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011830015167

Navigation