Advertisement

Environmental Biology of Fishes

, Volume 62, Issue 1–3, pp 171–194 | Cite as

How Hydrogeology has Shaped the Ecology of Missouri's Ozark Cavefish, Amblyopsis Rosae, and Southern Cavefish, Typhlichthys Subterraneus: Insights on the Sightless from understanding the Underground

  • Douglas B. Noltie
  • Carol M. Wicks
Article

Abstract

Two troglobitic fishes of conservation concern that inhabit Missouri are the Ozark and southern cavefishes, Amblyopsis rosae and Typhlichthys subterraneus, respectively. These species inhabit the groundwater of karstified bedrock in the Springfield and Salem plateau regions of the state, respectively. These two areas differ substantially – geographically, geologically, and hydrologically. This paper explores how these differences interact in shaping (1) the habitat in which these two species dwell, (2) the resulting ecological constraints that the fishes face, (3) how their ecologies and populations reflect these constraints, and (4) how conservation and management efforts may need to be tailored to best compliment the unique challenges that each species presents.

Amblyopsidae ecology hydrology geology habitat conservation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamskii, J.C. & A.L. Pugh. 1996. Occurrence of pesticides in ground water of the Ozark Plateaus province.Water Res. Bull. 32: 97–105.Google Scholar
  2. Aley, T. 1978. A predictive hydrologic model for evaluating the effects of land use and management on the quantity and quality of water from Ozark springs. Missouri Speleol. 18: 1–185.Google Scholar
  3. Appold, M.S. & G. Garven. 1999. The hydrology of ore formation in southeast Missouri district; numerical models of topographydriven fluid flow during the Ouachita Orogeny. Econ. Geol. 94: 913–935.Google Scholar
  4. Armstrong, J.G. & J.D. Williams. 1971. Cave and spring fishes of the southern bend of the Tennessee River. J. Tenn. Acad. Sci. 46: 107–115.Google Scholar
  5. Baker, C.D. 1972. The cephalic lateral line systems of amblyopsid blind cavefishes and other percopsiform fishes (Pisces: Percopsiformes). Ph.D. Dissertation, University of Louisville, Louisville. 113 pp.Google Scholar
  6. Balon, E.K. 1975. Reproductive guilds of fishes: a proposal and definition. J. Fish. Res. Board. Can. 32: 821–864.Google Scholar
  7. Barr, T.C., Jr. & J.R. Holsinger. 1985. Speciation in cave faunas. Ann. Rev. Ecol. Syst. 16: 313–337.Google Scholar
  8. Bechler, D.L. 1980. The evolution of agonistic behavior in amblyopsid fishes. Ph.D. Dissertation, St. Louis University, St. Louis. 160 pp.Google Scholar
  9. Bechler, D.L. 1981. Agonistic behavior in the Amblyopsidae, the spring, cave, and swamp fishes. Proc. Int. Cong. Speleol. 8: 68–69.Google Scholar
  10. Bechler, D.L. 1983. The evolution of agonistic behavior in amblyopsid fishes. Behav. Ecol. Sociobiol. 12: 35–42.Google Scholar
  11. Bergstrom, D.E. 1997. The phylogeny and historical biogeography of Missouri's Amblyopsis rosae (Ozark cavefish) and Typhlichthys subterraneus (southern cavefish). M.S. Thesis, University of Missouri, Columbia. 63 pp.Google Scholar
  12. Bloom, A.L. 1998. Geomorphology: a systematic analysis of late cenozoic landforms. 3rd edition. Prentice Hall, Upper Saddle River. 482 pp.Google Scholar
  13. Boyd, G.L. 1997. Metabolic rates and life history of aquatic organisms inhabiting Logan Cave stream in northwest Arkansas. M.S. Thesis, University of Arkansas, Fayetteville. 107 pp.Google Scholar
  14. Breder, C.M. Jr. & D.E. Rosen. 1996. Modes of reproduction in fishes. Natural History Press, Garden City. 941 pp.Google Scholar
  15. Bretz, J.H. 1953. Genetic relations of caves to peneplains and big springs in the Ozarks. Amer. J. Sci. 251: 1–24.Google Scholar
  16. Brown, A.V. & C.S. Todd. 1987. Status review of the threatened Ozark cavefish (Amblyopsis rosae). Proc. Ark. Acad. Sci. 41: 99–100.Google Scholar
  17. Brown, Z.J. 1996. Population dynamics and growth of Ozark cavefish in Logan Cave National Wildlife Refuge, Benton County, Arkansas. M.S. Thesis, University of Arkansas, Fayetteville. 105 pp.Google Scholar
  18. Charlton, H.H. 1933. The optic tectum and its related fiber tracts in blind fishes. A. Troglichthys rosae and Typhlichthys eigenmanni. J. Comp. Neurol. 57: 285–325.Google Scholar
  19. Cooper, J.E. & R.E. Kuehne. 1974. Speoplatyrhinus poulsoni, a new genus and species of subterranean fish from Alabama. Copeia 1974: 486–493.Google Scholar
  20. Crunkilton, R. 1985. Subterranean contamination of Maramec Spring by ammonium nitrate and urea fertilizer and its implication on rare cave biota. Missouri Speleol. 25: 151–158.Google Scholar
  21. Culver, D.C. 1982. Cave life: evolution and ecology. Harvard University Press, Cambridge. 189 pp.Google Scholar
  22. Dreiss, S.J. 1989. Regional scale transport in a karst aquifer: 1. Linear systems and time moment analysis. Water Res. Res. 25: 126–141.Google Scholar
  23. Eigenmann, C.H. 1898. A new blind fish. Proc. Indiana Acad. Sci. 1897: 231.Google Scholar
  24. Eigenmann, C.H. 1899a. The blind fishes of North America. Pop. Sci. Month. 56: 473–486.Google Scholar
  25. Eigenmann, C.H. 1899b. The blind fishes. Biol. Bull. 8: 113–126.Google Scholar
  26. Eigenmann, C.H. 1899c. A case of convergence. Science 9: 280–282.Google Scholar
  27. Eigenmann, C.H. 1899d. The eyes of the blind vertebrates of North America. I. The eyes of the Amblyopsidae. Arch. Entwick. Org. 8: 545–617.Google Scholar
  28. Eigenmann, C.H. 1909. Cave vertebrates of America: a study in degenerative evolution. Carnegie Institution of Washington Publication (104): 1–241.Google Scholar
  29. Fanning, B.J. 1994. Geospeleologic analysis of cave and karst development within the Boone and St. Joe formations of Benton and Madison counties, northwest Arkansas. M.S. Thesis, University of Arkansas, Fayetteville. 144 pp.Google Scholar
  30. Feder, G.L. 1973. A conceptual model of the hydrologic system supplying the large springs in the Ozarks. Ph.D. Dissertation, University of Missouri, Columbia. 149 pp.Google Scholar
  31. Ford, D.C. & P.W. Williams. 1989. Karst geomorphology and hydrology. Unwin Hyman Ltd., London. 601 pp.Google Scholar
  32. Ford, D.C., S.-E. Lauritzen & R. Ewers. 2000. Hardware and software modeling of initial conduit development in karst rocks. pp. 175–183. In: A.B. Klimchouk, D.C. Ford, A.N. Palmer & W. Dreybrodt (ed.) Speleogenesis: Evolution of Karst Aquifers, National Speleological Society, Huntsville.Google Scholar
  33. Garman, S. 1889. Cave animals from southwestern Missouri. Bull. Mus. Comp. Zool. 17: 232.Google Scholar
  34. Gregg, J.M. & K.L. Shelton. 1989. Minor-and trace-element distributions in the Bonneterre Dolomite (Cambrian), southeast Missouri: evidence for possible multiple-basin fluid sources and pathways during lead–zinc mineralization. Bull. Geol. Soc. Amer. 101: 221–230.Google Scholar
  35. Grossman, E.L., J.L. Schlichenmeyr, K.T. Clemence, G.A. Ulrich, J.M. Suflita, D. Martino & J.W. Ammermon. 1995. Microbial sulfur cycling in a shallow aquifer system. EOS, Trans. Amer. Geophys. Union 76: F221.Google Scholar
  36. Hargrove, G. 1968. Relation of a chert zone to development of Devils Icebox, Boone County, Missouri. Missouri Speleol. 10: 15–20.Google Scholar
  37. Hubbs, C.L. & R.M. Bailey. 1947. Blind catfishes from artesian waters of Texas. Occas. Papers Mus. Zool. Univ. Mich. 499: 1–15.Google Scholar
  38. Koppelman, J.H. & D.E. Figg. 1995. Genetic estimates of variability and relatedness for conservation of an Ozark cave crayfish species complex. Conserv. Biol. 9: 1288–1294.Google Scholar
  39. Langecker, T.G. & G. Longley. 1993a. Morphological adaptations of the Texas blind catfishes Trogloglanis pattersoni and Satan eurystomus(Siluriformes: Ictaluridae) to their underground environment. Copeia 1993: 976–986.Google Scholar
  40. Langecker, T.G. & G. Longley. 1993b. Blind catfish (Trogloglanis pattersoni and Satan eurystomus) from deep artesian waters: a study on convergent adaptation to cave and deep sea biota. pp. 239–255. In: J.H. Schroder, J. Bauer & M. Schartl (ed.) Trends in Ichthyology: An International Perspective, GSF Forschungszentrum f¨ur Umwelt und Gesundheit GmbH, in association with Blackwell Scientific Publications, Oxford.Google Scholar
  41. Leach, D.L. 1979. Temperature and salinity of the fluids responsible for minor occurrences of sphalerite in the Ozark region of Missouri. Econ. Geol. 74: 931–937.Google Scholar
  42. Leach, D.L., R.C. Nelson & D. Williams. 1975. Fluid inclusion studies in the northern Arkansas zinc district. Econ. Geol. 70: 1084–1091.Google Scholar
  43. Lee, D.S., C.R. Gilbert, C.H. Hocutt, R.E. Jenkins, D.E. McAllister & J.R. Stauffer, Jr. 1980. Atlas of North American freshwater fishes. North Carolina State Museum of Natural History, Raleigh. 854 pp.Google Scholar
  44. Mayden, R.L. (ed.). 1992. Systematics, historical ecology, and North American freshwater fishes. Stanford University Press, Stanford. 969 pp.Google Scholar
  45. Mayden, R.L. & F.B. Cross. 1983. Re-evaluation of Oklahoma records of the southern cavefish, Typhlichthys subterraneus Girard (Amblyopsidae). Southwest. Nat. 28: 471–473.Google Scholar
  46. McDonald, E.F. Jr. & W.L. Pflieger. 1979. The spring cavefish, Chologaster agassizi(Pisces: Amblyopsidae) in southeastern Missouri. Amer. Midl. Nat. 102: 194–196.Google Scholar
  47. Means, M.L. 1993. Population dynamics and movement of Ozark cavefish in Logan Cave NWR, Benton County, Arkansas with additional baseline water quality information. M.S. Thesis, University of Arkansas, Fayetteville. 126 pp.Google Scholar
  48. Means, M.L. & J.E. Johnson. 1995. Movement of threatened Ozark cavefish in Logan Cave National Wildlife Refuge, Arkansas. Southwest. Nat. 40: 308–313.Google Scholar
  49. Miller, R.J. & H.W. Robison. 1973. The fishes of Oklahoma. Oklahoma State University Press, Stillwater. 246 pp.Google Scholar
  50. Mohr, C.E. & T.L. Poulson. 1966. The life of the cave. McGraw Hill Book Company, New York. 232 pp.Google Scholar
  51. Moneymaker, B.C. & R.F. Rhoades. 1945. Deep solution channel in western Kentucky. Bull. Geol. Soc. Amer. 56: 39–44.Google Scholar
  52. Moyle, P.B. & J.J. Cech, Jr. 2000. Fishes – an introduction to ichthyology, 4th ed. Prentice Hall, Upper Saddle River. 612 pp.Google Scholar
  53. Nelson, J.S. 1989/90. Analysis of the multiple occurrence of pelvic fin absence in extant fishes. Matsya (India) 15/16: 21–38.Google Scholar
  54. Packard, A.S. Jr. & P.W. Putnam. 1872. The Mammoth Cave and its inhabitants, or descriptions of the fishes, insects and crustaceans found in the cave: with figures of the various species, and an account of allied forms, comprising notes upon their structure, development and habits, with remarks upon subterranean life in general. Naturalists’ Agency, Salem Press, Salem. 62 pp.Google Scholar
  55. Paige, K.N., C.R. Tumlinson & V.R. McDaniel. 1981. A second record of Typhlichthys subterraneus (Pisces: Amblyopsidae) from Arkansas. Southwest. Nat. 26: 67–92.Google Scholar
  56. Palmer, A.N. 1991. Origin and morphology of limestone caves. Bull. Geol. Soc. America 103: 1–21.Google Scholar
  57. Pitty, A.F. 1968. Some features of calcium hardness fluctuations in two karst streams and their possible value in geohydrological studies. J. Hydrol. 6: 202–208.Google Scholar
  58. Poulson, T.L. 1958. Cave fishes (Amblyopsidae). The Bloomington Indiana Grotto Newsletter 1: 29–37.Google Scholar
  59. Poulson, T.L. 1960. Cave adaptation in amblyopsid fishes. Ph.D. Dissertation, University of Michigan, Ann Arbor. 185 pp.Google Scholar
  60. Poulson, T.L. 1963. Cave adaptation in amblyopsid fishes. Amer. Midl. Nat. 70: 257–290.Google Scholar
  61. Poulson, T.L. 1964. Animals in aquatic environments: animals in caves. pp. 749–771. In: D.B. Dill, E.F. Adolph & C.G. Wilber (ed.) Handbook of Physiology: A Critical, Comprehensive Presentation of Physiological Knowledge and Concepts, Section 4: Adaptation to the Environment, American Physiological Society, Washington, D.C.Google Scholar
  62. Poulson, T.L. 1985. Evolutionary reduction by neutral mutations: plausibility arguments and data from amblyopsid fishes and linyphiid spiders. Nat. Speleol. Soc. Bull. 47: 109–117.Google Scholar
  63. Poulson, T.L. & W.B. White. 1969. The cave environment. Science 165: 971–981.Google Scholar
  64. Reams, M.W. 1968. Cave sediments and the geomorphic history of the Ozarks. Ph.D. Dissertation, Washington University, St. Louis. 113 pp.Google Scholar
  65. Robison, H.W. & T.M. Buchanan 1988. Fishes of Arkansas. The University of Arkansas Press, Fayetteville. 536 pp.Google Scholar
  66. Roedder, E. 1977. Fluid inclusion studies of the ore deposits of the Viburnum Trend, southeast Missouri. Econ. Geol. 72: 474–479.Google Scholar
  67. Romero, A. 1998a. Threatened fishes of the world: Typhlichthys subterraneus (Girard, 1860) (Amblyopsidae). Env. Biol. Fish. 53: 74.Google Scholar
  68. Romero, A. 1998b. Threatened fishes of the world: Amblyopsis rosae (Eigenmann, 1898) (Amblyopsidae). Env. Biol. Fish. 52: 434.Google Scholar
  69. Schmidt, K. 1995. Endangered, threatened, and special status fishes of North America, 4th ed. American Currents, special issue. North American Native Fishes Association. 77 pp.Google Scholar
  70. Schmidt, R.A. 1962. Temperatures of mineral formation in the Miami-Pitcher district as indicated by liquid inclusions. Econ. Geol. 57: 1–20.Google Scholar
  71. Schubert, A.L.S., C.D. Nielsen & D.B. Noltie. 1993. Habitat use and gas bubble disease in southern cavefish (Typhlichthys subterraneus). Int. J. Speleol. 22: 131–143.Google Scholar
  72. Schubert, A.L.S. & D.B. Noltie. 1995. Laboratory studies of substrate and microhabitat selection in the southern cave-fish (Typhlichthys subterraneus Girard). Ecol. Freshw. Fish 4: 141–151.Google Scholar
  73. Smith, V.J. 1980. Some aspects of the life history of the southern cavefish (Typhlichthys subterraneus Girard) in Missouri. M.S. Thesis, University of Missouri, Columbia. 123 pp.Google Scholar
  74. Suttkus, R.D. 1961. Additional information about blind catfishes from Texas. Southwest. Nat. 6: 55–64.Google Scholar
  75. Swofford, D.L., B.A. Branson & G.A. Sievert. 1980. Genetic differentiation of cavefish populations. Isozyme Bull. 13: 109–110.Google Scholar
  76. Symons, D.T.A. & D.F. Sangster. 1991. Paleomagnetic age of the central Missouri barite deposits and its genetic significance. Econ. Geol. 86: 1–12.Google Scholar
  77. Tafanelli, R. & J.E. Russell. 1972. A extension of the range of the blind cavefish Amblyopsis rosae (Eigenmann). Southwest. Nat. 17: 310.Google Scholar
  78. Ternan, J.L. 1972. Comments on the use of a calcium hardness variability index in the study of carbonate aquifers, with reference to the central Pennines, England. J. Hydrol. 16: 317–321.Google Scholar
  79. Thines, G. 1969. L'Evolution regressive des poissons cavernicoles et abyssaux. Masson et. Cie., Paris. 394 pp.Google Scholar
  80. Thompson, T.L. 1995. The stratigraphic succession in Missouri. Missouri Department of Natural Resources Division of Geology and Land Survey, volume 40 (2nd series) revised, Columbia. 188 pp.Google Scholar
  81. Unklesbay, A.G. & J.D. Vineyard. 1992. Missouri geology: three billions years of volcanoes, seas, sediments, and erosion. University of Missouri Press, Columbia. 189 pp.Google Scholar
  82. Vandike, J.E. 1985. Hydrogeologic aspects of the November 1981 liquid fertilizer pipeline break on groundwater in the Maramec Spring recharge area, Phelps County, Missouri. Missouri Speleol. 25: 93–101.Google Scholar
  83. Vandike, J.E. 1992. The hydrogeology of the Bennett Spring area, Laclede, Dallas,Webster, and Wright counties, Missouri. Missouri Department of Natural Resources, Water Resources Report 38: 1–111.Google Scholar
  84. Vandike, J.E. 1993. Groundwater level data for Missouri water year 1991–1992. Missouri Department of Natural Resources, Division of Geology and Land Survey,Water Resources Report 42: 1–95.Google Scholar
  85. Vandike, J.E. 1996. The hydrology of Maramec Spring. Missouri Department of Natural Resources,Water Resources Report 55: 1–104.Google Scholar
  86. Vineyard, J.D. & G.L. Feder. 1982. Springs of Missouri. Missouri Geological Survey and Water Resources, Water Resources Report 29: 1–267.Google Scholar
  87. Waples, R.S. 1991. Pacific salmon, Oncorhynchus spp., and the definition of 'species’ under the Endangered Species Act. Mar. Fish. Rev. 53: 11–22.Google Scholar
  88. Waples, R.S. 1995. Evolutionary significant units and the conservation of biological diversity Species Act. pp. 8–27. In: J.L. Nielsen & D.A. Powers (ed.) Evolution and the Aquatic Ecosystem, American Fisheries Society, Bethesda.Google Scholar
  89. Weaver, H.D. 1994. Highway and pipeline corridors: risk zones for Missouri caves. Missouri Cave and Karst Conserv. Dig. July: 7–12.Google Scholar
  90. Wicks, C.M. 1997. Origins of groundwater in a fluviokarst basin: Bonne Femme basin in central Missouri, USA. Hydrogeol. J. 5: 89–96.Google Scholar
  91. Wicks, C.M. & B. Bohn. 2000. Application of unit hydrograph technique to the discharge record at Big Spring, Carter County, Missouri. pp. 31–41. In: I.D. Sasowsky & C.M. Wicks (ed.) Groundwater Flow and Contaminant Transport in Carbonate Aquifers, Balkeman, Rotterdam.Google Scholar
  92. Wicks, C.M. & J.A. Hoke. 2000. Prediction of the quality and quantity of Maramec Spring water. Ground Water 38: 218–225.Google Scholar
  93. Willis, L.D. & A.V. Brown. 1985. Distribution and habitat requirements of the Ozark cavefish, Amblyopsis rosae. Amer. Midl. Nat. 114: 311–317.Google Scholar
  94. Woods, L.P. & R.F. Inger. 1957. The cave, spring, and swamp fishes of the family Amblyopsidae of central and eastern United States. Amer. Midl. Nat. 58: 232–256.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Douglas B. Noltie
    • 1
  • Carol M. Wicks
    • 2
  1. 1.Department of Fisheries and Wildlife Sciences, The School of Natural ResourcesUniversity of Missouri-ColumbiaColumbiaU.S.A.
  2. 2.Department of Geological SciencesUniversity of Missouri-ColumbiaColumbiaU.S.A.

Personalised recommendations