Advertisement

Biodiversity & Conservation

, Volume 10, Issue 9, pp 1497–1511 | Cite as

Plant and insect diversity along a pollution gradient: understanding species richness across trophic levels

  • Martin Brändle
  • Uwe Amarell
  • Harald Auge
  • Stefan Klotz
  • Roland Brandl
Article

Abstract

We analysed species richness of plants and true bugs (Insecta, Heteroptera) along a pollution gradient in Scots pine stands in Central Germany. As a consequence of particulate deposition, pH-values of soils increased in the vicinity of the emission source. Therefore, emission increased productivity. Species richness of plants increased with decreasing distance from emission source, and thus with increasing productivity. Similarly, species richness of herbivorous Heteroptera increased with decreasing distance from emission source, whereas, surprisingly, abundance decreased. The proportion of specialised herbivorous bug species is largest in the vicinity of the emission source. Thus, the diversity pattern of herbivores may be explained by the ‘specialisation hypothesis’ and not the ‘consumer rarity hypothesis’. Species richness and abundance of carnivorous Heteroptera showed no significant trend along the gradient. Overall our data favour the ‘bottom-up’ control of species diversity in the analysed system.

bottom-up diversity insect plant productivity top-down 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams PA (1995) Monotonic or unimodal diversity-productivity gradients: what does competition theory predicts? Ecology 76: 2019-2027Google Scholar
  2. Amarell U (1997)Anthropogene Vegetationsveränderungen in den Kiefernforsten der Dübener Heide. In: Feldmann R, Henle K, Auge H, Flachowsky J, Klotz S and Krönert R (eds) Regeneration und nachhaltige Landnutzung. Konzepte für belastete Regionen, pp 110-117. Springer-Verlag, BerlinGoogle Scholar
  3. Amarell U (1998)Kiefernforste der Dübener Heide-Ursachen und Verlauf der Entstehung und Veränderung von Forstgesellschaften. Dissertation, Institute of Botany, Geobotany and Botanical Garden, Martin-Luther-Universität, Halle/SaaleGoogle Scholar
  4. Barker JR and Tingey DT (1992) The effects of air pollution on biodiversity: a synopsis. In: Barker JR and Tingey DT (eds) Air Pollution Effects on Biodiversity, pp 3-9. Van Nostrand Reinhold, New YorkGoogle Scholar
  5. Brändle M (1997)Tritrophische Untersuchungen in einem belasteten Ökosystem. Die Wanzen (Heteroptera) als Modellsystem. Dissertation, Department of Ecology, Friedrich-Schiller-Universität, JenaGoogle Scholar
  6. Brändle M and Neumann S (1997)Der Einfluß von Immissionen auf die Diversität von Insekten verschiedener Trophiestufen. In: Feldmann R, Henle K, Auge H, Flachowsky J, Klotz S and Krönert R (eds) Regeneration und nachhaltige Landnutzung. Konzepte für belastete Regionen, pp 118-123. Springer-Verlag, BerlinGoogle Scholar
  7. Brändle M and Rieger C (1999) Die Wanzenfauna (Insecta, Heteroptera) von Kiefernstandorten (Pinus sylvestris L.) inMitteleuropa. Faunistische Abhandlungen Museum für Tierkunde, Dresden 21: 239-258Google Scholar
  8. Brändle M, Stadler J and Brandl R (2000) Body size and host range in European Heteroptera. Ecography 23: 139-148Google Scholar
  9. Braun-Blanquet J (1964) Pflanzensoziologie. Springer-Verlag, BerlinGoogle Scholar
  10. Crawley MJ (1993) GLIM for Ecologists. Blackwell Science Publications, OxfordGoogle Scholar
  11. DeAngelis DL (1994) Relationship between energetic of species and large scale species richness. In: Jones CG and Lawton JH (eds) Linking Species and Ecosystems, pp 263-272. Chapman & Hall, LondonGoogle Scholar
  12. Dolling WR (1991) The Hemiptera. Oxford University Press, New YorkGoogle Scholar
  13. Ellenberg H (1979)Zeigerwerte der Gefäß pflanzen Mitteleuropas. Scripta Geobotanica 9: 1-122Google Scholar
  14. Frank D and Klotz S (1990) Biologisch-ökologische Daten zur Flora der DDR. Wiss Beitr Martin-Luther-Universität, Halle-Wittenberg 32: 1-167Google Scholar
  15. Frenzel M and Brandl R (1998) Body size and host range in herbivorous beetles on different geographical scales. Verhandlungen der Gesellschaft für Ökologie 28: 201-205Google Scholar
  16. Gluch W (1997)Wirkungen der Luftbelastung auf dieWaldkiefer als dominante Baumart. Sichtbare Immissionschäden in den Baumkronen. In: Feldmann R, Henle K, Auge H, Flachowsky J, Klotz S and Krönert R (eds) Regeneration und nachhaltige Landnutzung. Konzepte für belastete Regionen, pp 102-105. Springer-Verlag, BerlinGoogle Scholar
  17. Gonzalez A, Lawton JH, Gilbert FS, Blackburn TM and Evans-Freke I (1998) Metapopulation dynamics, abundance and distribution in a microecosystem. Science 281: 2045-2047PubMedGoogle Scholar
  18. Gotelli NJ and Entsminger GL (1997) EcoSim. Null models software for ecology. Version 1.11. Acquired Intelligence Inc. & Kesey-BearGoogle Scholar
  19. Gotelli NJ and Graves GR (1996) Null Models in Ecology. Smithsonian Institution Press, Washington, DC/ LondonGoogle Scholar
  20. Grime JP (1979) Plant Strategies and Vegetation Processes. Wiley, ChichesterGoogle Scholar
  21. Halley JM (1996) Ecology, evolution and 1/f-noise. Trends in Ecology and Evolution 11: 33-37Google Scholar
  22. Harvey P and Pagel MD (1991) The Comparative Method in Evolutionary Ecology. Oxford University Press, OxfordGoogle Scholar
  23. Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Dimitrakopoulus PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O'Donnovan G, Otway SJ, Periea JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S and Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286: 1123-1127PubMedGoogle Scholar
  24. Hooper DU and Vitousek PM (2000) The effects of plant composition and diversity on ecosystem processes. Science 277: 1302-1305Google Scholar
  25. Huettl RF and Zoettl HW (1993) Liming as a mitigation tool in Germany's declining forests-reviewing results from former and recent trials. Forest Ecology and Management 61: 325-338Google Scholar
  26. Hunter MD and Price PW (1992) Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces. Ecology 73: 724-732Google Scholar
  27. Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52: 577-586Google Scholar
  28. Huston MA (1994) Biological Diversity: The Coexistence of Species on Changing Landscapes. Cambridge University Press, Cambridge, UKGoogle Scholar
  29. Huston MA (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110: 449-460CrossRefGoogle Scholar
  30. Huston MA and Gilbert L (1996) Consumer diversity and secondary production. In: Orians GH, Dirzo R and Cushman JH (eds) Biodiversity and Ecosystem Processes in Tropical Forests, pp 34-47. Springer-Verlag, Berlin/New YorkGoogle Scholar
  31. Kreutzer K (1995) Effects of forest liming on soil processes. Plant and Soil 169: 447-470Google Scholar
  32. Magguran AE (1988) Ecological Diversity and its Measurement. Princeton University Press, Princeton, New JerseyGoogle Scholar
  33. Manly BJF (1996) RT: a program for randomization testing. Centre for Applications of Statistics and Mathematics, University of Otago, DunedinGoogle Scholar
  34. Marschner B and Wilczynski AW (1991) The effects of liming on quantity and chemical composition of soil organic matter in a pine forest in Berlin, Germany. Plant and Soil 137: 229-236Google Scholar
  35. Moen J and Collins SL (1996) Trophic interactions and plant species richness along a productivity gradient. Oikos 76: 603-607Google Scholar
  36. Neuffer B, Auge H, Mesch H, Amarell U and Brandl R (1999) Spread of violets in polluted pine forests: morphological and molecular evidence for the ecological importance of interspecific hybridization. Molecular Ecology 8: 365-377Google Scholar
  37. Neumeister H, Franke C, Nagel C, Peklo G, Zierath R and Peklo P (1991) Immisionsbedingte Stoffeintraege aus der Luft als geomorphologischer Faktor. Geooekodynamik 7: 1-40Google Scholar
  38. Oksanen J (1996) Is the humped relationship between species richness and biomass an artefact due to plot size? Journal of Ecology 84: 293-295Google Scholar
  39. Oksanen L, Fretwell SD and Niemelä O (1981) Exploitation ecosystems in gradients of primary productivity. American Naturalist 118: 240-261Google Scholar
  40. Persson T (1989) Role of soil animals in C and N mineralisation. Plant and Soil 115: 241-245Google Scholar
  41. Ricklefs RE and Schluter D (1993) Regional and historical influences. In: Ricklefs RE and Schluter D (eds) Species Diversity in Ecological Communities, pp 350-363. The University of Chicago Press, ChicagoGoogle Scholar
  42. Rosenzweig ML and Abramsky Z (1993) How are diversity and productivity related? In: Ricklefs RE and Schluter D (eds) Species Diversity in Ecological Communities, pp 52-65. The University of Chicago Press, ChicagoGoogle Scholar
  43. Schaetzl RJ, Burns SF, Johnson DL and Small TW (1989) Tree uprooting: review of impacts on forest ecology. Vegetatio 79: 165-176Google Scholar
  44. Schmidt W (1992)Der Einfluß von Kalkungsmaß nahmen auf die Waldbodenvegetation. Z Ökologie u Naturschutz 1: 79-88Google Scholar
  45. Siemann E (1998) Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity. Ecology 79: 2057-2070Google Scholar
  46. Siemann E, Haarstad J and Tilman D (1999) Dynamics of plant and arthropod diversity during old field succession. Ecography 22: 406-414Google Scholar
  47. Smallidge PJ, Brach AR and Mackun IR (1993) Effects of watershed liming on terrestrial ecosystem processes. Environmental Reviews 1: 157-171Google Scholar
  48. Sokal RR and Rohlf FJ (1995) Biometry (3rd edn). Freeman and Company, New YorkGoogle Scholar
  49. Srivastava DS and Lawton JH (1998) Why more productive sites have more species: an experimental test of theory using tree-hole communities. American Naturalist 152: 510-529Google Scholar
  50. Strong DR, Lawton JH and Southwood TRE (1984) Insects on Plants-Community Patterns and Mechanism. Blackwell Scientific Publications, OxfordGoogle Scholar
  51. Tscharntke T (1992) Fragmentation of Phragmites habitats, minimum viable population size, habitat suitability, and local extinction of moths, midges, flies, aphids, and birds. Conservation Biology 6: 530-536Google Scholar
  52. Wagner E (1952) Blindwanzen oder Miriden. In: Dahl M and Bischoff H (eds) Die Tierwelt Deutschlands und der angrenzenden Meeresteile. 41. Teil, pp 1-218. Fischer, JenaGoogle Scholar
  53. Wagner E (1966)Wanzen oder Heteropteren. I. Pentatomorpha. In: Dahl M and Bischoff H (eds) Die Tierwelt Deutschlands und der angrenzenden Meeresteile. 54. Teil, pp 1-235. Fischer, JenaGoogle Scholar
  54. Wagner E (1967)Wanzen oder Heteropteren. II Cimicomorpha. In: Dahl M and Bischoff H (eds) Die Tierwelt Deutschlands und der angrenzenden Meeresteile. 55. Teil, pp 1-179. Fischer, JenaGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Martin Brändle
    • 1
  • Uwe Amarell
    • 1
  • Harald Auge
    • 1
  • Stefan Klotz
    • 1
  • Roland Brandl
    • 1
  1. 1.Department of Community EcologyUFZ Centre for Environmental Research Leipzig-Halle Ltd.Halle/ SaaleGermany

Personalised recommendations