Experimental & Applied Acarology

, Volume 25, Issue 6, pp 441–460 | Cite as

Development, survival and reproduction of Euseius finlandicus (Acari: Phytoseiidae) at different constant temperatures

  • Georgios D. Broufas
  • Dimitris S. Koveos
Article

Abstract

Development, survival and reproduction of Euseius finlandicus Oudemans were studied at seven constant temperatures (15, 20, 25, 27, 30, 32 and 34°C) in the laboratory. Within the temperature range tested, developmental period from egg to adult varied from 148 to 360.5 h and 133.7 to 336.5 h for females and males, respectively. The lower thermal threshold for immature development for females and males was 8.9 and 6.4°C, respectively. Survival during immature development exceeded 90% at all the temperatures from 15 to 32°C, but at 34°C an abrupt decline was recorded. Female longevity decreased gradually from 82.7 d at 15°C to 12.2 d at 34°C. The mean generation time ranged from 44.3 d at 15°C to 15.9 d at 32°C. The highest rm value (0.2817) was obtained at 30°C and the lowest at 15°C (0.0976). Temperatures above 30°C had an adverse effect on population increase.

development Euseius finlandicus life table reproduction temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. About-Setta, M.M. and Childers, C.C. 1987. Biology of Euseius mesembrinus (Acari: Phytoseiidae): life tables on ice plant pollen at different temperatures with notes on behavior and food range. Exp. Appl. Acarol. 3: 123-130.Google Scholar
  2. About-Setta, M.M. and Childers, C.C. 1989. Biology of Euseius mesembrinus (Acari: Phytoseiidae): life tables and feeding behavior of tetranychid mites on citrus. Environ. Entomol. 18: 665-669.Google Scholar
  3. Birch, L.C. 1948. The intrinsic rate of natural increase of an insect population. J. Anim. Ecol. 17: 15-26.Google Scholar
  4. Blommers, L. 1976. Capacities for increase and predation in Amblyseius bibens (Acari: Phytoseiidae). Z. Angew. Entomol. 81: 225-244.Google Scholar
  5. Broufas, G.D. and Koveos, D.S. 2000. Effect of different pollens on development, survivorship and reproduction of Euseius finlandicus (Acari: Phytoseiidae). Environ. Entomol. 29: 743-749.Google Scholar
  6. Caceres, S. and Childers, C.C. 1991. Biology and life tables of Galendromus helveolus (Acari: Phytoseiidae) on Florida citrus. Environ. Entomol. 20: 224-229.Google Scholar
  7. Campbell, A., Franzer, B.D., Gilbert, N., Gutierrez, A.P. and McKauer, M. 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11: 431-438.Google Scholar
  8. Camporese, P. and Duso, C. 1995. Life history and life table parameters of the predatory mite Typhlodromus talbii. Entomol. Exp. Appl. 77: 149-157.Google Scholar
  9. Chant, D.A. 1959. Phytoseiid mites (Acarina: Phytoseiidae). Part I. Bionomics of seven species in southeastern England. Can. Entomol. 91, (Suppl. 12): 44 pp.Google Scholar
  10. Dicke, M., Sabelis, M.W. and De Jong, M. 1988. Analysis of prey preference in phytoseiid mites by using an olfactometer, predation model and electrophoresis. Exp. Appl. Acarol. 5: 225-241.Google Scholar
  11. Duso, C. 1992. Biological control of tetranychid mites in peach orchards of Northern Italy: role of Amblyseius andersoni (Chant) and Amblyseius finlandicus (Oud.) (Acari: Phytoseiidae). Acta Phytopath. et Entomol. Hungarica 27: 211-217.Google Scholar
  12. Duso, C. and Sbrissa, F. 1990. Gli Acari Fitoseidi (Acari: Phytoseiidae) del melo nell'Italia settentrionale: distribuzione, biologia, ecologia ed importanza economica. Boll. Zool. Agr. Bachic. 22: 53-89.Google Scholar
  13. Dyer, J.G. and Swift, F.C. 1979. Sex ratio in field populations of phytoseiid mites (Acarina: Phytoseiidae). Ann. Entomol. Soc. Am. 72: 149-154.Google Scholar
  14. Ferragut, F., Garcia-Mari, F., Costa-Comelles, J. and Laborda, R. 1987. Influence of food and temperature on development and oviposition of Euseius stipulatus and Typhlodromus phialatus (Acari: Phytoseiidae). Exp. Appl. Acarol. 3: 317-329.Google Scholar
  15. Fouly, A.H., Abou-Setta, M.M. and Childers, C.C. 1995. Effects of diet on the biology and life tables of Typhlodromalus peregrinus (Acari: Phytoseiidae). Environ. Entomol. 24: 870-874.Google Scholar
  16. Gruys, P. 1982. Hits and misses: the ecological approach to pest control in orchards. Entomol. Exp. Appl. 31: 70-87.Google Scholar
  17. Herbert, H.J. 1981. Biology, life tables and intrinsic rate of increase of the European red mite, Panonychus ulmi (Acari: Tetranychidae). Can. Entomol. 113: 65-71.Google Scholar
  18. James, D.G. and Taylor, A. 1992. Effect of temperature on development and survival of Amblyseius victoriensis (Womersley) (Acari: Phytoseiidae). Int. J. Acarol. 18: 93-96.Google Scholar
  19. Kostiainen, T. and Hoy, M.A. 1994. Egg-harvesting allows large scale rearing of Amblyseius finlandicus (Acari: Phytoseiidae) in the laboratory. Exp. Appl. Acarol. 18: 155-165.Google Scholar
  20. Koveos, D.S. and Broufas, G.D. 2000. Functional response of Euseius finlandicus and Amblyseius andersoni on Panonychus ulmi on apple and peach leaves in the laboratory. Exp. Appl. Acarol. 24: 247-256.Google Scholar
  21. Kropczyncka, D. and Petanovic, R. 1987. Contribution to the knowledge of the predacious mites (Acari, Phytoseiidae) of Yugoslavia. Biosistematika 13: 81-86.Google Scholar
  22. Kropczynska, D. and Tuovinen, T. 1988. Occurrence of Phytoseiid mites (Acari: Phytoseiidae) on apple trees in Finland. Annal. Agriculturae Fenniae 27: 305-314.Google Scholar
  23. Logan, J.A., Wollkind, D.T., Hoyt, J.C. and Tanigoshi, L.K. 1976. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5: 1133-1140.Google Scholar
  24. McMurtry, A. 1981. The use of Phytoseiids for biological control: progress and future prospects. In: Recent advances in knowledge of the Phytoseiidae, M. A. Hoy (ed.), pp. 23-39. San Diego.Google Scholar
  25. McMurtry J.S., and Croft, B.A. 1997. Life-style of Phytoseiid mites and their roles in biological control. Ann. Rev. Entomol. 42: 291-321.Google Scholar
  26. Meyer, J S., Ingersoll, C.G., McDonald, L.L. and Boyce, M.S. 1986. Estimating uncertainty in population growth rates: jackknife versus bootstrap techniques. Ecology 67: 1156-1166.Google Scholar
  27. Ragusa Di Chiara, S., Papaioannou-Souliotis, P., Tsolakis, H. and Tsagkarakou, N. 1995. Acari fitoseidi (Parasitiformes, Phytoseiidae) della Grecia associati a piante forestali a diverse altitudini. Boll. Zool. Agr. Bachic. 27: 85-91.Google Scholar
  28. Rencken, I.C. and Pringle, K.L. 1998. Developmental biology of Amblyseius californicus (Mc-Gregor) (Acarina: Phytoseiidae), a predator of tetranychid mites, at three temperatures. African Ento. 6: 41-45.Google Scholar
  29. Sabelis, M.W. 1985a. Development. In: Spider mites. Their bology, natural enemies and control, W. Helle and M.W. Sabelis (eds), Vol. 1B, pp. 43-53. Elsevier.Google Scholar
  30. Sabelis, M.W. 1985b. Sex allocation. In: Spider mites. Their biology, natural enemies and control, W. Helle and M.W. Sabelis (eds), Vol. 1B, pp. 83-94. Elsevier.Google Scholar
  31. Sabelis, M.W. and Janssen, A. 1994. Evolution of life history patterns in the Phytoseiidae. In: Mites, ecological and evolutionary analyses of life-history patterns, M.A. Houck (ed.), pp. 70-98. Chapman and Hall, New York.Google Scholar
  32. Sanderson, J.P. and McMurtry, J.A. 1984. Life history studies of the predaceous mite Phytoseius hawaiiensis. Entomol. Exp. Appl. 35: 227-234.Google Scholar
  33. Schausberger, P. 1991. Vergleichende Untersuchungen zum Lebensverlauf, die Erstellung von Lebenstafeln und die Vermehrungskapazität von Amblyseius aberrans Oud. und Amblyseius finlandicus Oud. (Acari: Phytoseiidae). Pflanzenschutzberichte 52: 53-71.Google Scholar
  34. Schausberger, P. 1992. Vergleichende Untersuchungen über den Einfluâ unterschiedlicher Nahrung auf die Präimaginalentwicklung und die Reproduktion von Amblyseius aberrans Oud. und Amblyseius finlandicus Oud. (Acarina, Phytoseiidae). J. Appl. Entomol. 113: 476-486.Google Scholar
  35. Schausberger, P. 1998. Survival, development and fecundity in Euseius finlandicus, Typhlodromus pyri and Kampimodromus aberrans (Acari: Phytoseiidae) feeding on the San José scale Quadraspidiotus perniciosus (Coccina, Diaspididae). J. Appl. Entomol. 122: 53-56.Google Scholar
  36. Sokal, R.R. and Rohlf, F.J. 1995. Biometry: the Principles and Practice of Statistics in Biological Research, 3rd Edn. Freeman and Company, New York. SPSS, 1999. SPSS 9 for Windows User's Guide. Copyright 1999 by SPSS, Chicago, IL.Google Scholar
  37. Tanigoshi, L.K., Hoyt, S.C., Browne, R.W. and Logan, J.A. 1975. Influence of temperature on population increase of Metaseiulus occidentalis (Acarina: Phytoseiidae). Ann. Entomol. Soc. Am. 68: 979-986.Google Scholar
  38. Tanigoshi, L.K., Fargerlund, J. and Nishio-Wong, J. Y. 1981. Significance of temperature and food resources to the developmental biology of Amblyseius hibisci (Chang) (Acari: Phytoseiidae). Z. Angew. Entomol. 92: 409-419.Google Scholar
  39. Van de Vrie, M. 1974. Studies on prey predator interactions between Panonychus ulmi and Typhlodromus (A). potentillae (Acari: Tetranychidae, Phytoseiidae) on apple in the Netherlands. In: Proceedings of the FAO Conference on Ecology in Relation to Plant Pest Control, pp. 145-160 Rome.Google Scholar
  40. Van de Vrie, M. 1975. Some studies on the predator prey relationship in Amblyseius potentillae Garmans, A. finlandicus Oud. and Panonychus ulmi (Koch) on apple. Parasitica 31: 43-44.Google Scholar
  41. Yue, B. and Tsai, J.H. 1996. Development, survivorship and reproduction of Amblyseius largoensis (Acari: Phytoseiidae) on selected plant pollens and temperatures. Environ. Entomol. 25: 488-494.Google Scholar
  42. Zhao, Z. and McMurtry, J.A. 1990. Development and reproduction of three Euseius (Acari: Phytoseiidae) species in the presence and absence of supplementary foods. Exp. Appl. Acarol. 8: 233-242.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Georgios D. Broufas
    • 1
  • Dimitris S. Koveos
    • 1
    • 2
  1. 1.Laboratory of Applied Zoology and ParasitologyAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Faculty of Agriculture, Laboratory of Applied Zoology and ParasitologyAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations