Advertisement

Neurochemical Research

, Volume 26, Issue 7, pp 841–844 | Cite as

Bupivacaine Hydrochloride Induces Muscle Fiber Necrosis and Hydroxyl Radical Formation-Dimethyl Sulphoxide Reduces Hydroxyl Radical Formation

  • Nobuo Wakata
  • Hideki Sugimoto
  • Hiroaki Iguchi
  • Nobuatsu Nomoto
  • Masao Kinoshita
Article

Abstract

We induced acute skeletal muscle necrosis in rats using bupivacaine hydrochloride and found that both 2,5- and 2,3-dihydroxybenzoic acid significantly increased in skeletal muscle. A single administration of dimethyl sulphoxide, a free radical scavenger, significantly lowered concentrations of 2,5- and 2,3-dihydroxybenzoic acid. These results suggest that dimethyl sulphoxide is an effective hydroxyl radical scavenger and may be useful in the treatment of myopathy.

Bupivacaine hydrochloride hydroxyl radical dimethyl sulphoxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Kar, N. C. and Person, C. M. 1979. Catalase, superoxide dismutase, glutathione reductase and thiobarbituric acid-reactive products in normal and dystrophic human muscle. Clin. Chimica. Acta 94:277–280.Google Scholar
  2. 2.
    Burr, I. M., Asayama, K., and Fenichel, G. M. 1987. Superoxide dismutases, glutathione peroxidase, and catalase in neuromuscular disease. Muscle Nerve 10:150–154.Google Scholar
  3. 3.
    Klamut, H. J., Gangopadhyay, S. B., Worton, G. R., and Ray, P. N. 1990. Molecular and functional analysis of the musclespecific promoter region of the Duchenne muscular dystrophy gene. Mol. Cell. Biol. 10:193–205.Google Scholar
  4. 4.
    Boyce, F. M., Beggs, A. H., Feener, C., and Kunkel, L. M. 1991. Dystrophin is transcribed in brain from a distant upstream promoter. Proc. Natl. Acad. Sci. USA 88:1276–1280.Google Scholar
  5. 5.
    Rando, T. A., Crowley, R. S., Carlon, E. J., Epstein, C. J., and Mohapatra, P. K. 1998. Overexpression of copper/zinc superoxide dismutase: a novel cause of murine muscular dystrophy. Ann. Neurol. 44:381–386.Google Scholar
  6. 6.
    Wakata, N., Araki, Y., Sugimoto, H., Iguchi, H., and Kinoshita, M. 2000. IDPN-induced monoamine and hydroxyl radical changes in the rat brain. Neurochem. Res. 25:401–404.Google Scholar
  7. 7.
    Sokoll, M. D., Sonesson, B., and Thesleff, S. 1968. Denervation changes produced in an innervated skeletal muscle by longcontinued treatment with a local anesthtic. Eur. J. Pharmacol. 4:179–187.Google Scholar
  8. 8.
    Benoit, P. W. and Belt, W. D. 1970. Destruction and regeneration of skeletal muscle after treatment with a local anesthetic, bupivacaine (Marcaine). J. Anat. 107:547–556.Google Scholar
  9. 9.
    Hall-Craggs, E. C. B. and Seyan, H. S. 1975. Histochemical changes in innervated and denervated skeletal muscle fibers following treatment with bupivacaine (Marcaine). Exp. Neurol. 46:345–354.Google Scholar
  10. 10.
    Nonaka, I., Takagi, A., Ishiura, S., Nakase, H., and Sugita, H. 1983. Pathophysiology of muscle fiber necrosis induced by bupivacaine hydrochloride (Marcaine). Acta Neuropathol. 60:167–174.Google Scholar
  11. 11.
    McCabe, D. R., Maher, T. J., and Acworth, I. N. 1997. Improved method for the estimation of hydroxyl free radical levels in vivo based on liquid chromatography with electrochemical detection. J. Chromatogr. B. 691:23–32.Google Scholar
  12. 12.
    Korthuis, R. J., Granger, D. N., Townsley, M. I., and Taylor, A. E. 1985. The role of oxygen-derived free radicals in ischemiainduced increases in canine skeletal muscle vascular permiability. Circ. Res. 57:599–609.Google Scholar
  13. 13.
    Ingelman-Sundberg, M., Kaur, H., Terelius, Y., Persson, J. O., and Halliwell, B. 1991. Hydroxylation of salicylate by microsomal fractions and cytochrome P-450. Lack of production of 2,3-dihydroxybenzate unless hydroxyl radical formation is permitted. Biochem. J. 276:753–757.Google Scholar
  14. 14.
    Halliwell, B., Kaur, H., and Ingelman-Sundberg, M. 1991. Hydroxylation of salicylate as an assay for hydroxyl radicals: a cautinary note. Free Rad. Biol. Med. 10:439–441.Google Scholar
  15. 15.
    Hall, E. D., Andrus, P. K., Althaus, J. S., and von Voigtlander, P. F. 1993. Hydroxyl radical production and lipid peroxidation parallels selective post-ischemic vulnerability in gerbil brain. J. Neurosci. Res. 34:107–112.Google Scholar
  16. 16.
    Sloot, W. N. and Gramsbergen, J. B. P. 1995. Detection of salicylate and its hydroxylated adducts 2,3-and 2,5-dihydroxybenzoic acids as possible indices for in vivo hydroxyl radical formation in combination with catechol-and indoleamines and their metabolites in cerebrospinal fluid and brain tissue. J. Neurosci. Methods 60:141–149.Google Scholar
  17. 17.
    Mathew, T., Karunanithy, R., Yee, M. H., and Nataranjan, P. N. 1980 Hepatotoxicity of dimethylformamide and dimethylsulfoxide at and above the levels used in some aflatoxin studies. Lab. Invest. 42:257–262.Google Scholar
  18. 18.
    Sieger, C. P. 1978. Antidotal effects of dimethyl sulfoxide against paracetamol-, bromobenzene-and thioac etamide-induced hepatotoxicity. J. Pharm. Pharmacol. 30:375–377.Google Scholar
  19. 19.
    Park, Y., Smith, R. D., Combs, A. B., and Kehrer, J. P. 1988. Prevention of acetaminophen-induced hepatotoxicity by dimethyl sulfoxide. Toxicology 52:165–175.Google Scholar
  20. 20.
    Lind, R. C. and Gandolfi, A. J. 1997. Late dimethyl sulfoxide administration protective action against chemically induced injury in both liver and kidney. Toxicol. Appl. Pharmacol. 142:201–207.Google Scholar
  21. 21.
    Hülsmann, S., Greiner, C., Köhling, R., Wölfer, J., Moskopp, D., Riemann, B., Lücke, A., Wassmann, H., and Speckmann, E. J. 1999. Dimethyl sulfoxide increases latency of anoxic terminal negativity in hippocampal slices of guinea pig in vitro. Neurosci. Lett. 261:1–4.Google Scholar
  22. 22.
    Schmelzer, J. D., Zochodne, D. W., and Low, P. A. 1989. Ischemic and reperfusion injury of rat peripheral nerve. Proc. Natl. Acad. Sci. USA 86:1639–1642.Google Scholar
  23. 23.
    Feller, A. M., Roth, A. C., Russell, R. C., Eagleton, B., Suchy, H., and Debs, N. 1989. Experimental evaluation of oxygen free radical scavengers in the prevention of reperfusion injury to skeletal muscle. Ann. Plast. Surg. 22:321–330.Google Scholar
  24. 24.
    Concannon, M. J., Kester, C. G., Welsh, C. F., and Puckett, C. L. 1992. Patterns of free radical production after tourniquet ischemia: Implications for the hand surgeon. Plast. Reconstr. Surg. 89:846–852.Google Scholar
  25. 25.
    Bushell, A., Klenerman, L., Davies, H., Grierson, I., and Jackson, M. 1996. Ischemia-reperfusion-induced muscle damage: Protective effect of corticosteroids and antioxidants in rabbits. Acta Orthop. Scand. 67:393–398.Google Scholar
  26. 26.
    Zavitsanos, G., Huang, L., Panza, W., Serafin, D., and Klitzman, B. 1996. Limiting impairment of muscle function following ischemia and reperfusion in rabbits. J. Reconstr. Microsurg. 12:183–187.Google Scholar
  27. 27.
    Stoyanovsky, D. A., Melnikov, Z., and Cederbaum, A. I. 1999. ESR and HPLC-EC analysis of the interaction of hydroxyl radical with DMSO: Rapid reduction and quantification of POBN and PBN nitroxides. Anal. Chem. 71:715–721.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Nobuo Wakata
    • 1
  • Hideki Sugimoto
    • 1
  • Hiroaki Iguchi
    • 1
  • Nobuatsu Nomoto
    • 1
  • Masao Kinoshita
    • 1
  1. 1.Fourth Department of Internal MedicineToho University School of MedicineMeguro-ku, TokyoJapan

Personalised recommendations