Environmental Biology of Fishes

, Volume 61, Issue 4, pp 427–433 | Cite as

The Effects of Hypoxia on Three Sympatric Shark Species: Physiological and Behavioral Responses

Abstract

Behavioral and physiological responses to hypoxia were examined in three sympatric species of sharks: bonnethead shark Sphyrna tiburo, blacknose shark, Carcharhinus acronotus, and Florida smoothhound shark, Mustelus norrisi, using closed system respirometry. Sharks were exposed to normoxic and three levels of hypoxic conditions. Under normoxic conditions (5.5–6.4 mg l−1), shark routine swimming speed averaged 25.5 and 31.0 cm s−1 for obligate ram-ventilating S. tiburo and C. acronotus respectively, and 25.0 cm s−1 for buccal-ventilating M. norrisi. Routine oxygen consumption averaged about 234.6  mg O2 kg−1 h−1 for S. tiburo, 437.2 mg O2 kg−1 h−1 for C. acronotus, and 161.4 mg O2 kg−1 h−1 for M. norrisi. For ram-ventilating sharks, mouth gape averaged ∼1.0 cm whereas M. norrisi gillbeats averaged 56.0 beats min−1. Swimming speeds, mouth gape, and oxygen consumption rate of S. tiburo and C. acronotus increased to a maximum of 37–39 cm s−1, 2.5–3.0 cm and 496 and 599 mg O2 kg−1 h−1 under hypoxic conditions (2.5–3.4 mg l−1), respectively. M. norrisi decreased swimming speeds to 16 cm s−1 and oxygen consumption rate remained similar. Results support the hypothesis that obligate ram-ventilating sharks respond to hypoxia by increasing swimming speed and mouth gape while buccal-ventilating smoothhound sharks reduce activity.

dissolved oxygen oxygen consumption rate swimming speed Sphyrna tiburo Carcharhinus acronotus Mustelus norrisi respirometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burnett, L.E. 1997. The challenges of living in hypoxic and hypercapnic aquaticenvironments. Amer. Zool. 37: 633–640.Google Scholar
  2. Bushnell, P.G. & R.W. Brill. 1991. Responses ofswimming skipjack Katsuwonus pelamis and yellowfin Thunnus albacares tunas to acute hypoxia, and a model of their cardiovascular function. Phys. Zool. 64: 787–811.Google Scholar
  3. Butler, P.J. & E.W. Taylor. 1975. The effect ofprogressive hypoxia on respiration in the dogfish (Scyliorhinus canicula) at different seasonal temperatures. J. Exp. Biol. 63: 117–130.Google Scholar
  4. Carlson, J.K. 1998. The physiological ecology of the bonnethead shark, Sphyrna tiburo,blacknose shark, Carcharhinus acronotus, and Florida smoothhound shark, Mustelus norrisi: effects of dissolved oxygen and temperature. Ph.D. Thesis, University of Mississippi, Oxford. 106 pp.Google Scholar
  5. Cortés, E., C.A. Manire & R.E. Hueter. 1996. Diet, feeding habits, and diel feeding chronology of the bonnethead shark, Sphyrna tiburo, in southwest Florida. Bull. Mar. Sci. 58: 353–367.Google Scholar
  6. Fisher, P., K. Rademacher & K. Kils. 1992. Insitu investigations on the respiration and behavior of the eelpout Zoarces viviparus under short-term hypoxia. Mar. Ecol. Prog. Ser. 88: 181–184.Google Scholar
  7. Fry, F.E.J. & J.S. Hart. 1948. The relationship of temperature to oxygenconsumption in goldfish. Biol. Bull. 94: 66–77.Google Scholar
  8. Gooding, R.M., W.H. Neil & A. Dizon. 1981.Respiration rates and low-oxygen tolerance limits in skipjack tuna, Katsuwonus pelamis. U.S. Fish. Bull. 79: 31–48.Google Scholar
  9. Grace, M. & T. Henwood. 1998. Assessment of the distribution and abundance of coastal sharksin the U.S. Gulf of Mexico and eastern seaboard, 1995 and 1996. Mar. Fish. Rev. 59: 23–32.Google Scholar
  10. Gruber, S.H.,D.R. Nelson & J. Morrissey. 1988. Patterns of activity and space utilization of lemon sharks, Negaprion brevirostris, in a shallow Bahamian lagoon. Bull. Mar. Sci. 43: 61–77.Google Scholar
  11. Houston, A.H. & D. Cyr.1974. Thermoacclimatory variation in the hemoglobin system of goldfish (Carassius auratus) and rainbow trout (Salmo gairdneri). J. Exp. Biol. 61: 455–461.Google Scholar
  12. Hughes, G.M., A.D. Muster & K.H. Gotz. 1983.Respiration of the carp, Cyprinus carpio L., at 10 and 20C and the effects of hypoxia. J. Fish Biol. 22: 613–628.Google Scholar
  13. Kerstens, A., J.P. Lomholt & K. Johansen. 1979. The ventilation, extraction and uptake of oxygen inundisturbed flounders, Platichthys flesus: responses to hypoxia acclimation. J. Exp. Biol. 83: 169–179.Google Scholar
  14. Metcalf, J.D. & P.J. Butler. 1984. Changes in activity and ventilation response to hypoxia in unrestrained,unoperated dogfish, Scyliorhinus canicula. J. Exp. Biol. 108: 411–418.Google Scholar
  15. Nelson, D.R. & R.H. Johnson.1970. Diel activity rhythms in the nocturnal, bottom-dwelling sharks, Heterodontus francisci and Cephaloscylium ventriosum. Copeia 1970: 732–739.Google Scholar
  16. Neter, J., W. Wasserman & M.H. Kutner. 1990. Applied linearstatistical models. Richard D. Irwin, Boston. 1181 pp.Google Scholar
  17. Nilsson, G.E., P. Rosen & D. Johannson. 1993.Anoxic depression of spontaneous locomotor activity in crucian carp quantified by a computerized imaging technique. J. Exp. Biol. 180: 153–162.Google Scholar
  18. Nonnotte, G.V., V. Maxime, J.P. Truchot, P. Williot & C. Peyraud.1993. Respiratory responses to progressive hypoxia in the sturgeon, Acipenser baeri. Resp. Phys. 91: 71–82.Google Scholar
  19. Parsons, G.R. 1987. Life history and bioenergetics of the bonnethead shark, Sphyrna tiburo (Linnaeus): acomparison of two populations. Ph.D. Thesis, University of South Florida, St. Petersburg. 137 pp.Google Scholar
  20. Parsons, G.R. & K.A. Killam. 1991. Activity patterns of the bonnethead shark, Sphyrna tiburo (Linnaeus). J. Aquar. Aquat. Sci. 6: 8–13.Google Scholar
  21. Parsons, G.R. & J.K. Carlson. 1998. Physiological and behavioral responses tohypoxia in the bonnethead shark, Sphyrna tiburo: routine swimming and respiratory regulation. Fish Phys. Biochem. 19: 189–196.Google Scholar
  22. Perkins, E.J. 1974. The biology of estuaries and coastal waters. Academic Press, NewYork. 678 pp.Google Scholar
  23. Potvin, C., M.J. Lechowicz & S. Tardif. 1990. The statistical analysis of ecophysiologicalresponse curves obtained from experiments involving repeated measures. Ecology 71: 1389–1400.Google Scholar
  24. Randall, D.J. 1970. Gas exchange in fish. pp. 253–286. In: W.S. Hoar & D.J. Randall (ed.) FishPhysiology, Vol 4, Academic Press, New York.Google Scholar
  25. Roberts, J.L. 1978. Ram gill ventilation in fishes. pp:83- 88. In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.Google Scholar
  26. Saunders, R.L. 1961. The irrigation of the gills of fishes. I. Studies of the mechanism of branchial irrigation.Can. J. Zool. 39: 637–653.Google Scholar
  27. Saunders, R.L. 1962. The irrigation of gills in fishes Can. J. Zool.40: 817–862.Google Scholar
  28. Schurmann, H. & J.F. Steffensen. 1994. Spontaneous swimming activity of Atlanticcod, Gadus morhua, exposed to graded hypoxia at three different temperatures. J. Exp. Biol. 197: 129–142.Google Scholar
  29. Steffensen, J.F., J.P. Lomholt & K. Johansen. 1982. Gill ventilation and O2 extraction during graded hypoxiain two ecologically distinct species of flatfish, the flounder (Platichthys flesus) and the plaice (Pleuronectes platessa). Env. Biol. Fish 7: 157–163.Google Scholar
  30. Zar, J.H. 1984. Biostatistical analysis. Prentice Hall, Englewood Cliffs.718 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  1. 1.Biology DepartmentUniversity Of MississippiUniversityU.S.A.
  2. 2.Southeast Fisheries Science CenterNOAA/National Marine Fisheries ServicePanama CityU.S.A.

Personalised recommendations