Advertisement

Inorganic Materials

, Volume 37, Issue 9, pp 871–885 | Cite as

Van der Waals Radii of Elements

  • S. S. Batsanov
Article

Abstract

The available data on the van der Waals radii of atoms in molecules and crystals are summarized. The nature of the continuous variation in interatomic distances from van der Waals to covalent values and the mechanisms of transformations between these types of chemical bonding are discussed.

Keywords

Inorganic Chemistry Continuous Variation Chemical Bonding Interatomic Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Mack, E., The Spacing of Non-Polar Molecules in Crystal Lattices: The Atomic Domain of Hydrogen, J. Am. Chem. Soc., 1932, vol. 54, no. 6, pp. 2141–2165.Google Scholar
  2. 2.
    Magat, M., Ñber die “Wirkungsradien” gebundener Atome und den Orthoeffekt beim Dipolmoment, Z. Phys. Chem. (Munich), 1932, vol. 16, no. 1, pp. 1–18.Google Scholar
  3. 3.
    Pauling, L., The Nature of the Chemical Bond, Ithaca: Cornell Univ., 1960, 3rd ed.Google Scholar
  4. 4.
    Kitaigorodskii, A.I., Organicheskaya kristallokhimiya (Organic Crystal Chemistry), Moscow: Akad. Nauk SSSR, 1955.Google Scholar
  5. 5.
    Kitaigorodskii, A.I., Molekulyarnye kristally (Molecular Crystals), Moscow: Nauka, 1971.Google Scholar
  6. 6.
    Bondi, A., Van der Waals Volumes and Radii, J. Phys. Chem., 1964, vol. 68, no. 3, pp. 441–451.Google Scholar
  7. 7.
    Bondi, A., The Heat of Sublimation of Molecular Crystals: Analysis and Molecular Structure Correlation, in Condensation and Evaporation of Solids, New York: Gordon and Breach, 1964.Google Scholar
  8. 8.
    Batsanov, S.S., Van der Waals Radii of Elements Evaluated from the Morse Equation, Zh. Obshch. Khim., 1998, vol. 68, no. 4, pp. 529–534.Google Scholar
  9. 9.
    Zefirov, Yu.V. and Zorkii, P.M., Van der Waals Radii and Their Chemical Applications, Usp. Khim., 1989, vol. 58, no. 5, pp. 713–746.Google Scholar
  10. 10.
    Zefirov, Yu.V. and Zorkii, P.M., New Chemical Applications of the van der Waals Radii, Usp. Khim., 1995, vol. 64, no. 5, pp. 446–460.Google Scholar
  11. 11.
    Gavezzotti, A., The Calculation of Molecular Volume and the Use of Volume Analysis in the Investigation of Structured Media and of Solid-State Organic Reactivity, J. Am. Chem. Soc., 1983, vol. 105, no. 16, pp. 5220–5225.Google Scholar
  12. 12.
    Filippini, G. and Gavezzotti, A., Empirical Intermolecular Potentials for Organic Crystals: The 6-exp Approximation Revisited, Acta Crystallogr., Sect. B: Struct. Sci., 1993, vol. 49, no. 5, pp. 868–880.Google Scholar
  13. 13.
    Dunitz, J.D. and Gavezzotti, A., Attractions and Repulsions in Molecular Crystals, Acc. Chem. Res., 1999, vol. 32, no. 8, pp. 677–684.Google Scholar
  14. 14.
    Wieberg, N., Lehrbuch der anorganischen Chemie, Berlin: Gruyter, 1995.Google Scholar
  15. 15.
    Rowland, R.S. and Taylor, R., Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii, J. Phys. Chem., 1996, vol. 100, no. 18, pp. 7384–7391.Google Scholar
  16. 16.
    Batsanov, S.S., Van der Waals Radii of Elements from Structural Inorganic Chemistry Data, Izv. Akad. Nauk, Ser. Khim., 1995, no. 1, pp. 24–29.Google Scholar
  17. 17.
    Batsanov, S.S., Van der Waals Radii Evaluated from Structural Parameters of Metals, Zh. Fiz. Khim., 2000, vol. 74, no. 7, pp. 1273–1276.Google Scholar
  18. 18.
    Pyykkö, P. and Straka, M., Ab initio Studies of the Dimers (HgH2)2 and (HgMe2)2: Metallophilic Attraction and van der Waals Radii of Mercury, Phys. Chem. Chem. Phys., 2000, vol. 2, no. 11, pp. 2489–2493.Google Scholar
  19. 19.
    Cassidy, J.M. and Whitmire, K.H., Syntheses and Structures of the Phenylbismuth/Transition-Metal Carbonyl Compounds, Inorg. Chem., 1991, vol. 30, no. 13, pp. 2788–2795.Google Scholar
  20. 20.
    Batsanov, S.S., Calculation of van der Waals Radii of Atoms from Bond Distances, J. Mol. Struct., 1999, vol. 468, pp. 151–159.Google Scholar
  21. 21.
    Batsanov, S.S., Intramolecular Contact Radii Close to the van der Waals Radii, Zh. Neorg. Khim., 2000, vol. 45, no. 6, pp. 992–996.Google Scholar
  22. 22.
    Batsanov, S.S., Thermodynamic Estimation of Dissociation Pressure Parameters for Solid Molecular Substances, J. Phys. Chem. Solids, 1992, vol. 53, no. 2, pp. 319–321.Google Scholar
  23. 23.
    Evans, C.J. and Gerry, M.C., The Pure Rotational Spectra of AuCl and AuBr, J. Mol. Spectrosc., 2000, vol. 203, no. 1, pp. 105–117.Google Scholar
  24. 24.
    Anno, H., Koyanagi, T., and Matsubara, K., Epitaxial Growth of Zincblende MnTe Films as a New Magnetooptical Material, J. Cryst. Growth, 1992, vol. 117, pp. 816–819.Google Scholar
  25. 25.
    Batsanov, S.S., Atomic Radii of Elements, Zh. Neorg. Khim., 1991, vol. 36, no. 12, pp. 3015–3037.Google Scholar
  26. 26.
    Tsirel'son, V.G., Chemical Bonding and Thermal Motion of Atoms in Crystals, Itogi Nauki Tekh., Ser.: Kristallokhim., 1993, vol. 27.Google Scholar
  27. 27.
    Takeda, S., Inui, M., Tamaki, S., et al., Electron Charge Distribution in Liquid Tellurium, J. Phys. Soc. Jpn., 1993, vol. 62, no. 12, pp. 4277–4286.Google Scholar
  28. 28.
    Batsanov, S.S., Structural Features and Properties of Fluorine, Oxygen, and Nitrogen Atoms in Covalent Bonds, Izv. Akad. Nauk SSSR, Ser. Khim., 1989, no. 2, pp. 67–70.Google Scholar
  29. 29.
    Batsanov, S.S., Strukturnaya khimiya. Fakty i zavisimosti (Structural Chemistry: Findings and Correlations), Moscow: Mosk. Gos. Univ., 2000.Google Scholar
  30. 30.
    Batsanov, S.S., Atomic Configurations in Tetrahalide Molecules, Zh. Neorg. Khim., 2000, vol. 45, no. 12, pp. 2028–2031.Google Scholar
  31. 31.
    Montague, D.G., Chowdhury, M.R., Dore, J.C., and Reed, J.A., RISM Analysis of Structural Data for Tetrahedral Molecular Systems, Mol. Phys., 1983, vol. 50, no. 1, pp. 1–23.Google Scholar
  32. 32.
    Jöllenbeck, K.M. and Weidner, J.U., X-ray Structural Study of the Liquid Silicon, Germanium, and Tin Tetrachlorides, Ber. Bunsen-Ges. Phys. Chem., 1987, vol. 91, no. 1, pp. 17–24.Google Scholar
  33. 33.
    Misawa, M., Molecular Orientational Correlation in Liquid Halogens, J. Chem. Phys., 1989, vol. 91, no. 6, pp. 2575–2580.Google Scholar
  34. 34.
    Ben-Amotz, D. and Herschbach, D.R., Estimation of Effective Diameters for Molecular Fluids, J. Phys. Chem., 1990, vol. 94, no. 3, pp. 1038–1047.Google Scholar
  35. 35.
    Shil'nikov, V.I., Kuz'min, V.S., and Struchkov, Yu.T., Calculation of Atomic and Molecular Volumes and Areas, Zh. Strukt. Khim., 1993, vol. 34, no. 4, pp. 98–106.Google Scholar
  36. 36.
    Batsanov, S.S., Metallic Radii of Nonmetals, Izv. Akad. Nauk, Ser. Khim., 1994, no. 2, pp. 220–222.Google Scholar
  37. 37.
    Náray-Szabó, I., Kristalykemia, Budapest: Akadémiai Kiadó, 1969. Translated under the title Neorganicheskaya kristallokhimiya, Budapest: Hungarian Acad. Sci., 1969.Google Scholar
  38. 38.
    Donohue, J., The Structure of the Elements, New York: Wiley, 1974.Google Scholar
  39. 39.
    Chauvin, R., Explicit Periodic Trend of van der Waals Radii, J. Phys. Chem., 1992, vol. 96, no. 23, pp. 9194–9197.Google Scholar
  40. 40.
    Allinger, N.L., Calculation of Molecular Structure and Energy by Force-Field Methods, Adv. Phys. Org. Chem., 1976, vol. 13, pp. 1–82.Google Scholar
  41. 41.
    Allinger, N.L., Zhou, X., and Bergsma, J., Molecular Mechanics Parameters, J. Mol. Struct., 1994, vol. 312, pp. 69–83.Google Scholar
  42. 42.
    Batsanov, S.S., Van der Waals Radii of Metals from Spectroscopic Data, Izv. Akad. Nauk, Ser. Khim., 1994, no. 8, pp. 1374–1378.Google Scholar
  43. 43.
    Batsanov, S.S., On the Additivity of van der Waals Radii, J. Chem. Soc., Dalton Trans., 1998, no. 5, pp. 1541–1545.Google Scholar
  44. 44.
    Batsanov, S.S., Structural Aspects of van der Waals Complexes, Koord. Khim., 1998, vol. 24, no. 7, pp. 483–487.Google Scholar
  45. 45.
    Batsanov, S.S., Thermodynamic Aspects of the Formation of van der Waals Molecules, Dokl. Akad. Nauk, 1996, vol. 349, no. 3, pp. 340–342.Google Scholar
  46. 46.
    Batsanov, S.S., Some Aspects of van der Waals Interaction between Atoms, Zh. Fiz. Khim., 1998, vol. 72, no. 6, pp. 1008–1011.Google Scholar
  47. 47.
    Alkorta, I., Rozas, I., and Elguero, J., Charge-Transfer Complexes between Dihalogen Compounds and Electron Donors, J. Phys. Chem., 1998, vol. 102, pp. 9278–9285.Google Scholar
  48. 48.
    Allinger, N.L., Miller, M.A., Van Catledge, F.A., and Hirsch, J.A., The Calculation of the Conformation Structures of Hydrocarbons by the Westheimer-Hendrickson-Wiberg Method, J. Am. Chem. Soc., 1967, vol. 89, no. 17, pp. 4345–4357.Google Scholar
  49. 49.
    Boese, R., Bläser, D., Heinemann, O., et al., Evidence for Electron Density Features That Accompany the Noble Gases Solidification, J. Phys. Chem., 1999, vol. 103, no. 31, pp. 6209–6213.Google Scholar
  50. 50.
    Runeberg, N. and Pyykkö, P., Relativistic Pseudopotential Calculations on Xe2, RnXe, and Rn2: The van der Waals Properties of Radon, Int. J. Quantum Chem., 1998, vol. 66, no. 1, pp. 131–140.Google Scholar
  51. 51.
    Komissarov, A.V. and Heaven, M.C., Spectroscopy of the \({\text{A}}_\Delta ^{\text{2}} \)-\({\text{X}}_\Pi ^{\text{2}} \) Transition of CH/D-Ar, J. Chem. Phys., 2000, vol. 113, no. 5, pp. 1775–1780.Google Scholar
  52. 52.
    Harris, P.M., Mack, F., and Blake, F.C., The Atomic Arrangement in the Crystal of Orthorhombic Iodine, J. Am. Chem. Soc., 1928, vol. 50, no. 6, pp. 1583–1600.Google Scholar
  53. 53.
    Kitaigorodskii, A.I., Khotsyanova, T.L., and Struchkov, Yu.T., On the Crystal Structure of Iodine, Zh. Fiz. Khim., 1953, vol. 27, no. 6, pp. 780–781.Google Scholar
  54. 54.
    Zhdanov, G.S. and Zvonkova, Z.V., Evolution of Crystal-Chemical Views on the Nature of the Intermolecular Interaction and Intermolecular Radii Based on X-ray Diffraction Analysis, Tr. Inst. Kristallogr., 1954, no. 10, pp. 71–78.Google Scholar
  55. 55.
    Bent, H.A., Structural Chemistry of Donor-Acceptor Interactions, Chem. Rev. (Washington, D. C.), 1968, vol. 68, no. 5, pp. 587–648.Google Scholar
  56. 56.
    Nyburg, S.C. and Faerman, C.H., A Revision of van der Waals Atomic Radii for Molecular Crystals: Nitrogen, Oxygen, Fluorine, Sulfur, Chlorine, Selenium, Bromine, and Iodine Bonded to Carbon, Acta Crystallogr., Sect. B: Struct. Sci., 1985, vol. 41, no. 4, pp. 274–279.Google Scholar
  57. 57.
    Nyburg, S.C., Faerman, C.H., and Prasad, L., A Revision of van der Waals Atomic Radii for Molecular Crystals: II. Hydrogen Bonded to Carbon, Acta Crystallogr., Sect. B: Struct. Sci., 1987, vol. 43, no. 1, pp. 106–110.Google Scholar
  58. 58.
    Bader, R.F.W., Henneker, W.H., and Cade, P.E., Molecular Charge Distributions and Chemical Binding, J. Chem. Phys., 1967, vol. 46, no. 9, pp. 3341–3363.Google Scholar
  59. 59.
    Bader, R.F.W. and Bandrauk, A.D., Molecular Charge Distribution and Chemical Binding, J. Chem. Phys., 1968, vol. 49, no. 4, pp. 1653–1675.Google Scholar
  60. 60.
    Bader, R.F.W., Carroll, M.T., Cheeseman, J.R., and Chang, C., Properties of Atoms in Molecules: Atomic Volumes, J. Am. Chem. Soc., 1987, vol. 109, no. 26, pp. 7968–7979.Google Scholar
  61. 61.
    Ishikawa, M., Ikuta, S., Katada, M., and Sano, H., Anisotropy of van der Waals Radii of Atoms in Molecules: Alkali-Metal and Halogen Atoms, Acta Crystallogr., Sect. B: Struct. Sci., 1990, vol. 46, no. 5, pp. 592–598.Google Scholar
  62. 62.
    Badenhoop, J.K. and Winhold, F., Natural Steric Analysis: Ab initio van der Waals Radii of Atoms and Ions, J. Chem. Phys., 1997, vol. 107, no. 14, pp. 5422–5432.Google Scholar
  63. 63.
    Waber, J.T. and Cromer, D.T., Orbital Radii of Atoms and Ions, J. Chem. Phys., 1965, vol. 42, no. 12, pp. 4116–4123.Google Scholar
  64. 64.
    Batsanov, S.S., Van der Waals Radii of Hydrogen in Gas-Phase and Condensed Molecules, Struct. Chem., 1999, vol. 10, no. 6, pp. 395–400.Google Scholar
  65. 65.
    Batsanov, S.S., Anisotropy of van der Waals Atomic Radii in the Gas-Phase and Condensed Molecules, Struct. Chem., 2000, vol. 11, no. 2/3, pp. 177–183.Google Scholar
  66. 66.
    Batsanov, S.S., Anisotropy in the van der Waals Area of Complex, Condensed, and Gas-Phase Molecules, Koord. Khim., 2001, vol. 27, no. 11.Google Scholar
  67. 67.
    Dvorak, M.A., Ford, R.S., Suenram, R.D., et al., Van der Waals vs Covalent Bonding: Microwave Characterization of a Structurally Intermediate Case, J. Am. Chem. Soc., 1992, vol. 114, no. 1, pp. 108–115.Google Scholar
  68. 68.
    Klinkhammer, K.W. and Pyykkö, P., Ab initio Interpretation of the Closed-Shell Intermolecular Attraction in Dipnicogen and Dichalcogen Hydride Model Dimers, Inorg. Chem., 1995, vol. 34, no. 16, pp. 4134–4138.Google Scholar
  69. 69.
    Leopold, K.R., Canagaratna, M., and Phillips, J.A., Partially Bonded Molecules from the Solid State to the Stratosphere, Acc. Chem. Res., 1997, vol. 30, no. 2, pp. 57–64.Google Scholar
  70. 70.
    Aquilanti, V., Ascenzi, D., Bartolomei, M., et al., The Nature of the Bonding in the O2-O2 Dimer, J. Am. Chem. Soc., 1999, vol. 121, no. 46, p. 10794.Google Scholar
  71. 71.
    Lutz, H.D., Bonding and Structure of Water Molecules in Solid Hydrates: Correlation of Spectroscopic and Structural Data, Struct. Bonding, 1988, vol. 86, pp. 97–125.Google Scholar
  72. 72.
    Pyykkö, P., Strong Closed-Shell Interactions in Inorganic Chemistry, Chem. Rev. (Washington, D. C.), 1997, vol. 97, no. 5, pp. 597–636.Google Scholar
  73. 73.
    Batsanov, S.S., Effect of Intermolecular Distances on the Probability of Covalent Bonding, Zh. Fiz. Khim., 2001, vol. 75, no. 4, pp. 754–756.Google Scholar
  74. 74.
    Keller, R., Holzapfel, W.B., and Schulz, H., Effect of Pressure on the Atom Position in Se and Te, Phys. Rev. B: Solid State, 1977, vol. 6, no. 10, pp. 4404–4412.Google Scholar
  75. 75.
    Isomäki, H.M. and von Boehm, J., Pressure Dependence of the Permittivity of Trigonal Se and Te, Phys. Rev. B: Condens. Matter, 1987, vol. 35, no. 15, pp. 8019–8023.Google Scholar
  76. 76.
    Parthasarathy, G. and Holzapfel, W.B., High-Pressure Structural Phase Transition in Tellurium, Phys. Rev. B: Condens. Matter, 1988, vol. 37, no. 14, pp. 8499–8501.Google Scholar
  77. 77.
    Akahama, Y., Kobayashi, M., and Kawamura, H., Pressure-Induced Structural Phase Transition in Sulfur at 83 GPa, Phys. Rev. B: Condens. Matter, 1994, vol. 48, no. 10, pp. 6862–6864.Google Scholar
  78. 78.
    Kikegawa, T. and Iwasaki, H., An X-ray Diffraction Study of Lattice Compression and Phase Transition of Crystalline Phosphorus, Acta Crystallogr., Sect. B: Struct. Sci., 1983, vol. 39, no. 2, pp. 158–164.Google Scholar
  79. 79.
    Beister, H.J., Strössner, K., and Syassen, K., Rhombohedral to Simple-Cubic Phase Transition in Arsenic under Pressure, Phys. Rev. B: Condens. Matter, 1990, vol. 41, pp. 5535–5543.Google Scholar
  80. 80.
    Fujihisa, H., Fujii, Y., Takemura, K., and Shimomura, O., Structural Aspects of Dense Solid Halogens under High Pressure Studied by X-ray Diffraction-Molecular Dissociation and Metallization, J. Phys. Chem. Solids, 1995, vol. 56, no. 10, pp. 1439–1444.Google Scholar
  81. 81.
    Bürgi, H.B., Determination of the Stereochemistry of the Reaction Pathway from Crystal Structure Data, Angew. Chem., 1975, vol. 87, no. 13, pp. 461–475.Google Scholar
  82. 82.
    O'Keefe, M. and Brese, N.E., Bond-Valence Parameters for Anion-Anion Bonds in Solids, Acta Crystallogr., Sect. B: Struct. Sci., 1992, vol. 48, no. 2, pp. 152–154.Google Scholar
  83. 83.
    Zachariasen, W.H., The Crystal Structure of Monoclinic Metaboric Acid, Actra Crystallogr., 1963, vol. 16, no. 5, pp. 385–389.Google Scholar
  84. 84.
    Dubler, E. and Linowski, L., Proof of the Existence of a Linear, Centrosymmetric Polyiodine Ion, Helv. Chim. Acta, 1975, vol. 58, no. 8, pp. 2604–2609.Google Scholar
  85. 85.
    Batsanov, S.S., Crystal-Chemical Evaluation of the Pressure of Polymorphic Transformations in Covalently Bonded Substances, Zh. Strukt. Khim., 1993, vol. 34, no. 4, pp. 112–116.Google Scholar
  86. 86.
    Batsanov, S.S., Effect of High Pressure on Crystal Electronegativities of Elements, J. Phys. Chem. Solids, 1997, vol. 58, no. 3, pp. 527–532.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • S. S. Batsanov
    • 1
  1. 1.Center for High Dynamic PressuresMoscow oblastRussia

Personalised recommendations