Plant Molecular Biology

, Volume 46, Issue 6, pp 673–682 | Cite as

Establishment of Arabidopsis thaliana ribosomal protein RPL23A-1 as a functional homologue of Saccharomyces cerevisiae ribosomal protein L25

  • Kerri B. McIntosh
  • Peta C. Bonham-Smith

Abstract

Arabidopsis thaliana ribosomal protein (r-protein) RPL23A-1 shows 54% amino acid sequence identity to the Saccharomyces cerevisiae equivalent r-protein, L25. AtRPL23A-1 also shows high amino acid sequence identity to members of the L23/L25 r-protein family in other species. R-protein L25 in S. cerevisiae has been identified as a primary rRNA-binding protein that directly binds to a specific site on yeast 26S rRNA. It is translocated to the nucleolus where it binds to 26S rRNA during early large ribosome subunit assembly; this binding is thought to play an important role in ribosome assembly. The S. cerevisiae mutant strain YCR61 expresses L25 when grown on galactose, but not glucose, medium. Transformation of YCR61 with a shuttle vector containing the AtRPL23A-1 cDNA allowed transformed colonies to grow in and on glucose selection medium. R-protein AtRPL23A-1 can complement the L25 mutation, demonstrating the functional equivalence of the two r-proteins and introducing AtRPL23A-1 as the first plant member of the L23/L25 r-protein family.

Arabidopsis thaliana AtRPL23A complementation evolution ribosomal protein rRNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agatep, R., Kirkpatrick, R.D., Parchaliuk, D.L., Woods, R.A., and Gietz, R.D. 1998. Transformation of Saccharomyces cerevisiae by the lithium acetate/single-stranded carrier DNA/polyethylene glycol (LiAc/ssDNA/PEG) protocol. Technical Tips Online (http://tto.trends.com).Google Scholar
  2. Bailey-Serres, J. 1998. Cytoplasmic ribosomes of higher plants. In: J. Bailey-Serres and D.R. Gallie (Eds.) A Look Beyond Transcription: Mechanisms Determining mRNA Stability and Translation in Plants, American Association of Plant Physiologists, Rockwell, MD, pp. 125–144.Google Scholar
  3. Dick, F.A. and Trumpower, B.L. 1998. Heterologous complemen-tation reveals that mutant alleles of QSR1 render 60S ribosomal subunits unstable and translationally inactive. Nucl. Acids Res. 26: 2442–2448.PubMedGoogle Scholar
  4. El-Baradi, T.T.A.L., Raué, H.A., De Regt, V.C.H.F. and Planta, R.J. 1984. Stepwise dissociation of yeast 60S ribosomal subunits by LiCl and identification of L25 as a primary 26S rRNA binding protein. Eur. J. Biochem. 144: 393–400.PubMedGoogle Scholar
  5. El-Baradi, T.T.A.L., Raué, H.A., de Regt, V.C.H.F., Verbree, E.C. and Planta, R.J. 1985. Yeast ribosomal protein L25 binds to an evolutionary conserved site on yeast 26S and E. coli 23S rRNA. EMBO J. 4: 2101–2107.PubMedGoogle Scholar
  6. El-Baradi, T.T.A.L., de Regt, V.C.H.F., Planta, R.J., Nierhaus, K.H. and Raué, H.A. 1987. Interaction of ribosomal proteins L25 from yeast and EL23 from E. coli with yeast 26S and mouse 28S rRNA. Biochimie 69: 939–948.PubMedGoogle Scholar
  7. Jeeninga, R.E., Venema, J. and Raué, H.A. 1996. Rat RL23a ribosomal protein efficiently competes with its Saccharomyces cerevisiae L25 homologue for assembly into 60S subunits. J. Mol. Biol. 263: 648–656.PubMedGoogle Scholar
  8. Kooi, E.A., Rutgers, C.A., Mulder, A., van' t Riet, J., Venema, J. and Raué H.A. 1993. The phylogenetically conserved doublet tertiary interaction in domain III of the large-subunit rRNA is crucial for ribosomal protein binding. Proc. Natl. Acad. Sci. USA 90: 213–216.PubMedGoogle Scholar
  9. Kooi, E.A., Rutgers, C.A., Kleijmeer, M.J., van' t Riet, J., Venema, J. and Raué, H.A. 1994. Mutational analysis of the C-terminal re-gion of Saccharomyces cerevisiae ribosomal protein L25 in vitro and in vivo demonstrates the presence of two distinct functional elements. J. Mol. Biol. 240: 243–255.PubMedGoogle Scholar
  10. Moore, V.G., Atchison, R.E., Thomas, G., Moran, M., and Noller, H.F. 1975. Identification of a ribosomal protein essential for peptidyl transferase activity. Proc. Natl. Acad. Sci. USA 72: 844–848.PubMedGoogle Scholar
  11. Nissen, P., Hansen, J., Ban, N., Moore, P.B. and Steitz, T.A. 2000. The structural basis of ribosome activity in peptide bond synthesis. Science 289: 920–930.Google Scholar
  12. Noller, H.F., Hoffarth, V. and Zimniak, L. 1992. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256: 1416–1419.PubMedGoogle Scholar
  13. Noller, H.F. 1993. Peptidyl transferase: protein, ribonucleoprotein, or RNA? J. Bact. 175: 5297–5300.PubMedGoogle Scholar
  14. Raué, H.A., Klootwijk, J. and Musters, W. 1988. Evolutionary conservation of structure and function of high molecular weight ribosomal RNA. Prog. Biophys. Mol. Biol. 51: 77–129.PubMedGoogle Scholar
  15. Rutgers, C.A., Schaap, P.J., van’ t Riet, J., Woldringh, C.L. and Raué, H.A. 1990. In vivo and in vitro analysis of structure-function relationships in ribosomal protein L25 from Saccha-romyces cerevisiae. Biochim. Biophys. Acta 1050: 74–79.PubMedGoogle Scholar
  16. Rutgers, C.A., Rientjes, J.M.J., van’ t Riet, J. and Raué, H.A. 1991. rRNA binding domain of yeast ribosomal protein L25: identification of its borders and a key leucine residue. J. Mol. Biol. 218: 375–385.PubMedGoogle Scholar
  17. Sanger, F., Miklen, S. and Coulson, A.R. 1977. DNA sequencing with chain-terminating inhibitor. Proc. Natl. Acad. Sci. USA 74: 5463–5467.PubMedGoogle Scholar
  18. Schaap, P.J., van’ t Riet, J., Woldringh, C.L. and Raué, H.A. 1991. Identification and functional analysis of the nuclear localization signals of ribosomal protein L25 from Saccharomyces cerevisiae. J. Mol. Biol. 221: 225–237.PubMedGoogle Scholar
  19. Schnare, M.N., Damberger, S.H., Gray, M.W. and Gutell, R.R. 1996. Comprehensive comparison of structural characteristics in eukaryotic cytoplasmic large-subunit (23S-like) ribosomal RNA. J. Mol. Biol. 256: 701–719.PubMedGoogle Scholar
  20. Sherman, F., Fink, G.R. and Hicks, J.B. 1983. Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Plainview, NY.Google Scholar
  21. Thiede, B., Urlaub, H., Neubauer, H., Grelle, G. and Wittmann-Liebold, B. 1998. Precise determination of RNA-protein contact sites in the 50S ribosomal subunit of Escherichia coli. Biochem. J. 334: 39–42.PubMedGoogle Scholar
  22. Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673–4680.PubMedGoogle Scholar
  23. van Beekvelt, C.A., Kooi, E.A., de Graaff-Vincent, M., van’ t Riet, J., Venema, J. and Raué, H.A. 2000. Domain III of Saccha-romyces cerevisiae 25S ribosomal RNA: its role in binding of ribosomal protein L25 and 60S subunit formation. J. Mol. Biol. 296: 7–17.PubMedGoogle Scholar
  24. Vester, B, and Garrett, R.A. 1984. Structure of a protein L23-RNA complex located at the A-site domain of the ribosomal peptidyl transferase centre. J. Mol. Biol. 179: 431–452.PubMedGoogle Scholar
  25. Warner, J.R. 1989. Synthesis of ribosomes in Saccharomyces cerevisiae. Micro Rev. 53: 256–271.Google Scholar
  26. Watkins, J.F., Sung, P., Prakash, S. and Prakash, L. 1993. The extremely conserved amino terminus of RAD6 ubiquitin-conjugating enzyme is essential for amino-end rule-dependent protein degradation. Genes Dev. 7: 250–261.PubMedGoogle Scholar
  27. Weitzmann, C.J. and Cooperman, B.S. 1990. Reconstitution of Escherichia coli 50S ribosomal subunits containing puromycinmodified L23: functional consequences. Biochemistry 29: 3458–3465.PubMedGoogle Scholar
  28. Wool, I.G., Chan, Y.-L. and Gluck, A. 1995. Structure and evolution of mammalian ribosomal proteins. Biochem. Cell Biol. 73: 933–947.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Kerri B. McIntosh
    • 1
  • Peta C. Bonham-Smith
    • 1
  1. 1.Department of BiologyUniversity of SaskatchewanSaskatoon, SaskatchewanCanada

Personalised recommendations